Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 126
Filtrer
1.
Sci Rep ; 14(1): 15421, 2024 07 04.
Article de Anglais | MEDLINE | ID: mdl-38965297

RÉSUMÉ

Aedes aegypti and Aedes albopictus are the main vectors of arboviruses such as Dengue, Chikungunya and Zika, causing a major impact on global economic and public health. The main way to prevent these diseases is vector control, which is carried out through physical and biological methods, in addition to environmental management. Although chemical insecticides are the most effective strategy, they present some problems such as vector resistance and ecotoxicity. Recent research highlights the potential of the imidazolium salt "1-methyl-3-octadecylimidazolium chloride" (C18MImCl) as an innovative and environmentally friendly solution against Ae. aegypti. Despite its promising larvicidal activity, the mode of action of C18MImCl in mosquito cells and tissues remains unknown. This study aimed to investigate its impacts on Ae. aegypti larvae and three cell lines of Ae. aegypti and Ae. albopictus, comparing the cellular effects with those on human cells. Cell viability assays and histopathological analyses of treated larvae were conducted. Results revealed the imidazolium salt's high selectivity (> 254) for mosquito cells over human cells. After salt ingestion, the mechanism of larval death involves toxic effects on midgut cells. This research marks the first description of an imidazolium salt's action on mosquito cells and midgut tissues, showcasing its potential for the development of a selective and sustainable strategy for vector control.


Sujet(s)
Aedes , Imidazoles , Insecticides , Larve , Aedes/effets des médicaments et des substances chimiques , Animaux , Larve/effets des médicaments et des substances chimiques , Imidazoles/toxicité , Imidazoles/pharmacologie , Insecticides/toxicité , Insecticides/pharmacologie , Humains , Vecteurs moustiques/effets des médicaments et des substances chimiques , Lignée cellulaire , Survie cellulaire/effets des médicaments et des substances chimiques , Lutte contre les moustiques/méthodes
2.
Pathogens ; 13(6)2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38921757

RÉSUMÉ

The Chikungunya virus (CHIKV) presents global health challenges, with Brazil experiencing outbreaks since its introduction in 2014. In 2023, following a CHIKV outbreak in Minas Gerais (MG), social media was used to optimize an entomological survey aimed at identifying vectors and viral lineages and assessing insecticide resistance. Following Instagram posts, residents with suspected CHIKV infection were able to schedule mosquito aspirations. In total, 421 mosquitoes (165 Aedes aegypti and 256 Culex quinquefasciatus) were captured from 40 households in Salinas city (MG) and tested for the Dengue, Zika, and Chikungunya viruses through RT-qPCR. Twelve of 57 pools (10 Ae. aegypti and two Cx. quinquefasciatus) tested positive for CHIKV RNA. Viral RNA was also detected in the heads of nine Ae. aegypti, indicating viral dissemination but not in Cx. quinquefasciatus. Genome sequencing yielded the first near-complete genome from the 2023 outbreak, unveiling that the CHIKV strain belonged to the East/Central/South African (ECSA) genotype. Additionally, genetic analyses revealed high frequencies of kdr alleles, including in CHIKV-infected mosquitoes, suggesting resistance to pyrethroid insecticides in this Ae. aegypti population. Social media was important for guiding mosquito-capture efforts in CHIKV transmission hotspots, thus optimizing the opportunity for viral detection. These findings emphasize the urgent need for innovative vector studies and control strategies, as well as interdisciplinary approaches in public health interventions.

3.
J Virol Methods ; 329: 114969, 2024 Jun 02.
Article de Anglais | MEDLINE | ID: mdl-38834144

RÉSUMÉ

The recent COVID-19 pandemic disclosed a critical shortage of diagnostic kits worldwide, emphasizing the urgency of utilizing all resources available for the development and production of diagnostic tests. Different heterologous protein expression systems can be employed for antigen production. This study assessed novel SARS-CoV-2 proteins produced by a transient expression system in Nicotiana benthamiana utilizing an infectious clone vector based on pepper ringspot virus (PepRSV). These proteins included the truncated S1-N protein (spike protein N-terminus residues 12-316) and antigen N (nucleocapsid residues 37-402). Two other distinct SARS-CoV-2 antigens expressed in Escherichia coli were evaluated: QCoV9 chimeric antigen protein (spike protein residues 449-711 and nucleocapsid protein residues 160-406) and QCoV7 truncated antigen (nucleocapsid residues 37-402). ELISAs using the four antigens individually and the same panel of samples were performed for the detection of anti-SARS-CoV-2 IgG antibodies. Sensitivity was evaluated using 816 samples from 351 COVID-19 patients hospitalized between 5 and 65 days after symptoms onset; specificity was tested using 195 samples collected before 2018, from domiciliary contacts of leprosy patients. Our findings demonstrated consistent test sensitivity, ranging from 85 % to 88 % with specificity of 97.5 %, regardless of the SARS-CoV2 antigen and the expression system used for production. Our results highlight the potential of plant expression systems as useful alternative platforms to produce recombinant antigens and for the development of diagnostic tests, particularly in resource-constrained settings.

4.
J Invertebr Pathol ; 204: 108127, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38729296

RÉSUMÉ

We report the genomic analysis of a novel alphabaculovirus, Mythimna sequax nucleopolyhedrovirus isolate CNPSo-98 (MyseNPV-CNPSo-98), obtained from cadavers of the winter crop pest, Mythimna sequax Franclemont (Lepidoptera: Noctuidae). The insects were collected from rice fields in Southern Brazil in the 1980's and belongs to the 'EMBRAPA-Soja' Virus Collection. High-throughput sequencing reads of DNA from MyseNPV occlusion bodies and assembly of the data yielded an AT-rich circular genome contig of 148,403 bp in length with 163 annotated opening reading frames (ORFs) and four homologous regions (hrs). Phylogenetic inference based on baculovirus core protein sequence alignments indicated that MyseNPV-CNPSo-98 is a member of Alphabaculovirus genus that clustered with other group II noctuid-infecting baculoviruses, including viruses isolated from Helicoverpa armigera and Mamestra spp. The genomes of the clade share strict collinearity and high pairwise nucleotide identity, with a common set of 149 genes, evolving under negative selection, except a bro gene. Branch lengths and Kimura-2-parameter pairwise nucleotide distances indicated that MyseNPV-CNPSo-98 represents a distinct lineage that may not be classified in any of the currently listed species in the genus.


Sujet(s)
Génome viral , Papillons de nuit , Phylogenèse , Animaux , Papillons de nuit/virologie , Baculoviridae/génétique , Nucleopolyhedrovirus/génétique , Nucleopolyhedrovirus/isolement et purification , Nucleopolyhedrovirus/classification , Génomique
5.
Heliyon ; 10(9): e29938, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38707409

RÉSUMÉ

Lateral flow immunoassays (LFIA) for antibody detection represent cost-effective and user-friendly tools for serology assessment. This study evaluated a new LFIA prototype developed with a recombinant chimeric antigen from the spike/S and nucleocapsid/N proteins to detect anti-SARS-CoV-2 IgG antibodies. The evaluation of LFIA sensitivity and specificity used 811 serum samples from 349 hospitalized, SARS-CoV-2 RT-qPCR positive COVID-19 patients, collected at different time points and 193 serum samples from healthy controls. The agreement between ELISA results with the S/N chimeric antigen and LFIA results was calculated. The LFIA prototype for SARS-CoV-2 using the chimeric S/N protein demonstrated 85 % sensitivity on the first week post symptoms onset, reaching 94 % in samples collected at the fourth week of disease. The agreement between LFIA and ELISA with the same antigen was 92.7 %, 0.827 kappa Cohen value (95 % CI [0.765-0.889]). Further improvements are needed to standardize the prototype for whole blood use. The inclusion of the novel chimeric S + N antigen in the COVID-19 IgG antibody LFIA demonstrated optimal agreement with results from a comparable ELISA, highlighting the prototype's potential for accurate large-scale serologic assessments in the field in a rapid and user-friendly format.

6.
Biologicals ; 86: 101769, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38759304

RÉSUMÉ

This study focuses on the development and initial assessment of an indirect IgG enzyme-linked immunosorbent assay (ELISA) specifically designed to detect of anti-SARS-CoV-2 antibodies. The unique aspect of this ELISA method lies in its utilization of a recombinant nucleocapsid (N) antigen, produced through baculovirus expression in insect cells. Our analysis involved 292 RT-qPCR confirmed positive serum samples and 54 pre-pandemic healthy controls. The process encompassed cloning, expression, and purification of the SARS-CoV-2 N gene in insect cells, with the resulted purified protein employed in our ELISA tests. Statistical analysis yielded an Area Under the Curve of 0.979, and the optimized cut-off exhibited 92 % sensitivity and 94 % specificity. These results highlight the ELISA's potential for robust and reliable serological detection of SARS-CoV-2 antibodies. Further assessments, including a larger panel size, reproducibility tests, and application in diverse populations, could enhance its utility as a valuable biotechnological solution for diseases surveillance.


Sujet(s)
Anticorps antiviraux , Baculoviridae , COVID-19 , Test ELISA , Protéines recombinantes , SARS-CoV-2 , Test ELISA/méthodes , Humains , SARS-CoV-2/immunologie , SARS-CoV-2/génétique , Baculoviridae/génétique , Anticorps antiviraux/sang , Anticorps antiviraux/immunologie , Protéines recombinantes/immunologie , Protéines recombinantes/génétique , COVID-19/diagnostic , COVID-19/sang , COVID-19/immunologie , Animaux , Protéines de la nucléocapside des coronavirus/immunologie , Protéines de la nucléocapside des coronavirus/génétique , Dépistage sérologique de la COVID-19/méthodes , Cellules Sf9 , Antigènes viraux/immunologie , Antigènes viraux/génétique , Protéines nucléocapside/immunologie , Protéines nucléocapside/génétique , Sensibilité et spécificité , Immunoglobuline G/sang , Immunoglobuline G/immunologie , Phosphoprotéines/immunologie , Phosphoprotéines/génétique
7.
Braz J Microbiol ; 55(2): 1913-1921, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38615311

RÉSUMÉ

Wasps are important parasitoids of stinkbugs and frequently exposed to various types of microorganisms through environmental contact and fecal-oral transmission route. Many parasitize stinkbug eggs and are commercially used in the field to control insect population. The parasitoid T. podisi is known for its high parasitism capacity and ability to target multiple species of stinkbugs. In this study we asked whether T. podisi exposed to eggs infected by a multispecies asymptomatic stinkbug virus, the Halyomorpha halys virus (HhV) would get infected. HhV is a geographically distributed multispecies iflavirus previously found to infect four stinkbug hosts, including three Brazilian species, Chinavia ubica, Euschistus heros and Diceraeus melacanthus, and T. posidi can parasitize all of them. As results, RT-PCR screening revealed positive samples for the HhV genome in two out of four tested pools of T. podisi, whereas the antigenome, indicative of replicative activity, was not detected. The wasps were raised in E. heros eggs that presented both the genome and the antigenome forms of the HhV genome. Subsequent RNA-deep sequencing of HhV positive T. podisi RNA pools yielded a complete genome of HhV with high coverage. Phylogenetic analysis positioned the isolate HhV-Tp (isolate Telenomus podisi) alongside with the stinkbug HhV. Analysis of transcriptomes from several hymenopteran species revealed HhV-Tp reads in four species. However, the transmission mechanism and the ecological significance of HhV remain elusive, warranting further studies to illuminate both the transmission process and its capacity for environmental propagation using T. podisi as a potential vector.


Sujet(s)
Guêpes , Animaux , Guêpes/virologie , Phylogenèse , Brésil , Heteroptera/virologie , Heteroptera/parasitologie , Ovule/virologie , Hymenoptera/virologie , Génome viral
8.
Folia Microbiol (Praha) ; 69(1): 91-99, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38017300

RÉSUMÉ

Bacillus thuringiensis (Bt) is known for its Cry and Vip3A pesticidal proteins with high selectivity to target pests. Here, we assessed the potential of a novel neotropical Bt strain (UFT038) against six lepidopteran pests, including two Cry-resistant populations of fall armyworm, Spodoptera frugiperda. We also sequenced and analyzed the genome of Bt UFT038 to identify genes involved in insecticidal activities or encoding other virulence factors. In toxicological bioassays, Bt UFT038 killed and inhibited the neonate growth in a concentration-dependent manner. Bt UFT038 and HD-1 were equally toxic against S. cosmioides, S. frugiperda (S_Bt and R_Cry1 + 2Ab populations), Helicoverpa zea, and H. armigera. However, larval growth inhibition results indicated that Bt UFT038 was more toxic than HD-1 to S. cosmioides, while HD-1 was more active against Chrysodeixis includens. The draft genome of Bt UFT038 showed the cry1Aa8, cry1Ac11, cry1Ia44, cry2Aa9, cry2Ab35, and vip3Af5 genes. Besides this, genes encoding the virulence factors (inhA, plcA, piplC, sph, and chi1-2) and toxins (alo, cytK, hlyIII, hblA-D, and nheA-C) were also identified. Collectively, our findings reveal the potential of the Bt UFT038 strain as a source of insecticidal genes against lepidopteran pests, including S. cosmioides and S. frugiperda.


Sujet(s)
Bacillus thuringiensis , Insecticides , Papillons de nuit , Animaux , Humains , Nouveau-né , Bacillus thuringiensis/génétique , Bacillus thuringiensis/métabolisme , Glycine max , Endotoxines/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Hémolysines/génétique , Hémolysines/métabolisme , Hémolysines/pharmacologie , Insecticides/pharmacologie , Insecticides/métabolisme , Spodoptera/métabolisme , Larve , Facteurs de virulence/métabolisme , Lutte biologique contre les nuisibles
9.
Braz J Microbiol ; 54(4): 2893-2901, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37930615

RÉSUMÉ

The gold standard for diagnosing COVID-19 in the acute phase is RT-qPCR. However, this molecular technique can yield false-negative results when nasopharyngeal swab collection is not conducted during viremia. To mitigate this challenge, the enzyme-linked immunosorbent assay (ELISA) identifies anti-SARS-CoV-2 IgM antibodies in the initial weeks after symptom onset, facilitating early COVID-19 diagnosis. This study introduces a novel and highly specific IgM antibody capture ELISA (MAC-ELISA), which utilizes biotinylated recombinant SARS-CoV-2 nucleocapsid (N) antigen produced in plants. Our biotinylated approach streamlines the procedure by eliminating the requirement for an anti-N-conjugated antibody, circumventing the need for peroxidase-labeled antigens, and preventing cross-reactivity with IgM autoantibodies such as rheumatoid factor. Performance evaluation of the assay involved assessing sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy using 682 RT-qPCR-positive samples, categorized by weeks relative to symptoms onset. Negative controls included 205 pre-pandemic serum samples and 46 serum samples from patients diagnosed with other diseases. Based on a cut-off of 0.087 and ROC curve analysis, the highest sensitivity of 81.2% was observed in the 8-14 days post-symptom (dps) group (2nd week), followed by sensitivities of 73.8% and 68.37% for the 1-7 dps (1st week) and 15-21 dps groups (3rd week), respectively. Specificity was consistently 100% across all groups. This newly developed biotinylated N-MAC-ELISA offers a more streamlined and cost-effective alternative to molecular diagnostics. It enables simultaneous testing of multiple samples and effectively identifies individuals with false-negative results.


Sujet(s)
COVID-19 , Humains , COVID-19/diagnostic , Dépistage de la COVID-19 , SARS-CoV-2 , Test ELISA/méthodes , Immunoglobuline M , Anticorps antiviraux , Nucléocapside , Sensibilité et spécificité
10.
Discov Nano ; 18(1): 118, 2023 Sep 21.
Article de Anglais | MEDLINE | ID: mdl-37733165

RÉSUMÉ

BACKGROUND: It is known that some sectors of hospitals have high bacteria and virus loads that can remain as aerosols in the air and represent a significant health threat for patients and mainly professionals that work in the place daily. Therefore, the need for a respirator able to improve the filtration barrier of N95 masks and even inactivating airborne virus and bacteria becomes apparent. Such a fact motivated the creation of a new N95 respirator which employs chitosan nanoparticles on its intermediate layer (SN95 + CNP). RESULTS: The average chitosan nanoparticle size obtained was 165.20 ± 35.00 nm, with a polydispersity index of 0.36 ± 0.03 and a zeta potential of 47.50 ± 1.70 mV. Mechanical tests demonstrate that the SN95 + CNP respirator is more resistant and meets the safety requisites of aerosol penetration, resistance to breath and flammability, presenting higher potential to filtrate microbial and viral particles when compared to conventional SN95 respirators. Furthermore, biological in vitro tests on bacteria, fungi and mammalian cell lines (HaCat, Vero E6 and CCL-81) corroborate the hypothesis that our SN95 + CNP respirator presents strong antimicrobial activity and is safe for human use. There was a reduction of 96.83% of the alphacoronavirus virus and 99% of H1N1 virus and MHV-3 betacoronavirus after 120 min of contact compared to the conventional respirator (SN95), demonstrating that SN95 + CNP have a relevant potential as personal protection equipment. CONCLUSIONS: Due to chitosan nanotechnology, our novel N95 respirator presents improved mechanical, antimicrobial and antiviral characteristics.

12.
Arch Virol ; 168(9): 222, 2023 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-37548749

RÉSUMÉ

Bacterial spot is a highly damaging tomato disease caused by members of several species of the genus Xanthomonas. Bacteriophages have been studied for their potential use in the biological control of bacterial diseases. In the current study, bacteriophages were obtained from soil and tomato leaves in commercial fields in Brazil with the aim of obtaining biological control agents against bacterial spot. Phage isolation was carried out by co-cultivation with isolates of Xanthomonas euvesicatoria pv. perforans, which was prevalent in the collection areas. In a host range evaluation, none of the phage isolates was able to induce a lytic cycle in all of the bacterial isolates tested. In in vivo tests, treatment of susceptible bacterial isolates with the corresponding phage prior to application to tomato plants led to a reduction in the severity of the resulting disease. The level of disease control provided by phage application was equal to or greater than that achieved using copper hydroxide. Electron microscopy analysis showed that all of the phages had similar morphology, with head and tail structures similar to those of viruses belonging to the class Caudoviricetes. The presence of short, non-contractile tubular tails strongly suggested that these phages belong to the family Autographiviridae. This was confirmed by phylogenetic analysis, which further revealed that they all belong to the genus Pradovirus. The phages described here are closely related to each other and potentially belong to a new species within the genus. These phages will be evaluated in future studies against other tomato xanthomonad strains to assess their potential as biological control agents.


Sujet(s)
Bactériophages , Caudovirales , Solanum lycopersicum , Bactériophages/génétique , Phylogenèse , Brésil , Agents de lutte biologique , Maladies des plantes/prévention et contrôle , Maladies des plantes/microbiologie
13.
Braz J Microbiol ; 54(3): 1447-1458, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-37531005

RÉSUMÉ

The decline in honey bee colonies in different parts of the world in recent years is due to different reasons, such as agricultural practices, climate changes, the use of chemical insecticides, and pests and diseases. Viral infections are one of the main causes leading to honey bee population declines, which have a major economic impact due to honey production and pollination. To investigate the presence of viruses in bees in southern Brazil, we used a metagenomic approach to sequence adults' samples of concentrated extracts from Apis mellifera collected in fifteen apiaries of six municipalities in the Rio Grande do Sul state, Brazil, between 2016 and 2017. High-throughput sequencing (HTS) of these samples resulted in the identification of eight previously known viruses (Apis rhabdovirus 1 (ARV-1), Acute bee paralysis virus (ABPV), Aphid lethal paralysis virus (ALPV), Black queen cell virus (BQCV), Bee Macula-like virus (BeeMLV), Deformed wing virus (DWV), Lake Sinai Virus NE (LSV), and Varroa destructor virus 3 (VDV-3)) and a thogotovirus isolate. This thogotovirus shares high amino acid identities in five of the six segments with Varroa orthomyxovirus 1, VOV-1 (98.36 to 99.34% identity). In contrast, segment 4, which codes for the main glycoprotein (GP), has no identity with VOV-1, as observed for the other segments, but shares an amino acid identity of 34-38% with other glycoproteins of viruses from the Orthomyxoviridae family. In addition, the putative thogotovirus GP also shows amino acid identities ranging from 33 to 41% with the major glycoprotein (GP64) of insect viruses of the Baculoviridae family. To our knowledge, this is the second report of a thogotovirus found in bees and given this information, this thogotovirus isolate was tentatively named Apis thogotovirus 1 (ATHOV-1). The detection of multiple viruses in bees is important to better understand the complex interactions between viruses and their hosts. By understanding these interactions, better strategies for managing viral infections in bees and protecting their populations can be developed.


Sujet(s)
Abeilles , Virus des insectes , Abeilles/virologie , Métagénomique , Séquençage nucléotidique à haut débit , Brésil , Virus des insectes/classification , Virus des insectes/génétique , Virus des insectes/isolement et purification , Phylogenèse , Protéines virales/composition chimique , Protéines virales/génétique
14.
Arch Virol ; 168(7): 182, 2023 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-37322175

RÉSUMÉ

Viruses of four families of arthropod-specific, large dsDNA viruses (the nuclear arthropod large DNA viruses, or NALDVs) possess homologs of genes encoding conserved components involved in the baculovirus primary infection mechanism. The presence of such homologs encoding per os infectivity factors (pif genes), along with their absence from other viruses and the occurrence of other shared characteristics, suggests a common origin for the viruses of these families. Therefore, the class Naldaviricetes was recently established, accommodating these four families. In addition, within this class, the ICTV approved the creation of the order Lefavirales for three of these families, whose members carry homologs of the baculovirus genes that code for components of the viral RNA polymerase, which is responsible for late gene expression. We further established a system for the binomial naming of all virus species in the order Lefavirales, in accordance with a decision by the ICTV in 2019 to move towards a standardized nomenclature for all virus species. The binomial species names for members of the order Lefavirales consist of the name of the genus to which the species belongs (e.g., Alphabaculovirus), followed by a single epithet that refers to the host species from which the virus was originally isolated. The common names of viruses and the abbreviations thereof will not change, as the format of virus names lies outside the remit of the ICTV.


Sujet(s)
Arthropodes , Granulovirus , Virus , Animaux , Arthropodes/génétique , Virus à ADN/génétique , Baculoviridae , Spécificité d'hôte
15.
Viruses ; 15(6)2023 05 26.
Article de Anglais | MEDLINE | ID: mdl-37376550

RÉSUMÉ

In recent years, the Zika Virus (ZIKV) has caused pandemic outbreaks associated with a high rate of congenital ZIKV syndrome (CZS). Although all strains associated with worldwide outbreaks derive from the Asian lineage, the reasons for their enhanced spread and severity are not fully understood. In this study, we conducted a comparative analysis of miRNAs (miRNA-155/146a/124) and their cellular targets (SOCS1/3, SHP1, TRAF6, IRAK1), as well as pro- and anti-inflammatory and anti-viral cytokines (IL-6, TNF-α, IFN-γ, IL-10, and IFN-ß) and peroxisome proliferator-activated receptor γ (PPAR-γ) expression in BV2 microglia cells infected with ZIKV strains derived from African and Asian lineages (ZIKVMR766 and ZIKVPE243). BV2 cells were susceptible to both ZIKV strains, and showed discrete levels of viral replication, with delayed release of viral particles without inducing significant cytopathogenic effects. However, the ZIKVMR766 strain showed higher infectivity and replicative capacity, inducing a higher expression of microglial activation markers than the ZIKVPE243 strain. Moreover, infection with the ZIKVMR766 strain promoted both a higher inflammatory response and a lower expression of anti-viral factors compared to the ZIKVPE243 strain. Remarkably, the ZIKKPE243 strain induced significantly higher levels of the anti-inflammatory nuclear receptor-PPAR-γ. These findings improve our understanding of ZIKV-mediated modulation of inflammatory and anti-viral innate immune responses and open a new avenue to explore underlining mechanisms involved in the pathogenesis of ZIKV-associated diseases.


Sujet(s)
microARN , Infection par le virus Zika , Virus Zika , Humains , Virus Zika/physiologie , Microglie/métabolisme , Récepteurs activés par les proliférateurs de peroxysomes , Réplication virale/physiologie , Antiviraux
16.
Parasit Vectors ; 16(1): 140, 2023 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-37095528

RÉSUMÉ

BACKGROUND: Arboviruses are a group of viruses transmitted to vertebrate hosts by certain blood-feeding arthropods. Among urban vectors of arboviruses, mosquitoes of the genus Aedes are the most common. However, other mosquitoes may be susceptible to infection and involved in the transmission, such as Mansonia spp. Therefore, this study aimed to investigate whether Mansonia humeralis can be infected with the Mayaro virus (MAYV). METHODS: These insects were collected from 2018 to 2020 in chicken coops of rural communities in Jaci Paraná in Porto Velho, Rondônia, Brazil, while performing blood-feeding on roosters. The mosquitoes were randomly grouped in pools from which the head and thorax were macerated and checked for the presence of MAYV by quantitative reverse transcription polymerase chain reaction (RT-qPCR). The positive pools were used to infect the C6/36 cell line, and on different days post-infection, the supernatant of the infected cells was subjected to viral detection by RT-qPCR. RESULTS: A total of 183 pools of female mosquitoes were tested, of which 18% were positive for MAYV; some samples from insect pools inoculated into C6/36 cells showed in vitro multiplication capacity between 3 and 7 days post-infection. CONCLUSIONS: This is the first report of Ma. humeralis mosquitoes that are naturally infected by MAYV, indicating that these vectors may be potential transmitting agents of this arbovirus.


Sujet(s)
Aedes , Infections à alphavirus , Alphavirus , Arbovirus , Culicidae , Animaux , Mâle , Femelle , Poulets , Vecteurs moustiques
17.
Arch Microbiol ; 205(4): 143, 2023 Mar 26.
Article de Anglais | MEDLINE | ID: mdl-36967401

RÉSUMÉ

Bacillus thuringiensis (Bt) is a biological alternative to the indiscriminate use of chemical insecticides in agriculture. Due to resistance development on insect pests to Bt crops, isolating novel Bt strains is a strategy for screening new pesticidal proteins or strains containing toxin profile variety that can delay resistance. Besides, the combined genomic and proteomic approaches allow identifying pesticidal proteins and virulence factors accurately. Here, the genome of a novel Bt strain (Bt TOL651) was sequenced, and the proteins from the spore-crystal mixture were identified by proteomic analysis. Toxicity bioassays with the spore-crystal mixture against larvae of Diatraea saccharalis and Anticarsia gemmatalis, key pests of sugarcane and soybean, respectively, were performed. The toxicity of Bt TOL651 varies with the insect; A. gemmatalis (LC50 = 1.45 ng cm-2) is more susceptible than D. saccharalis (LC50 = 73.77 ng cm-2). Phylogenetic analysis of the gyrB gene indicates that TOL651 is related to Bt kenyae strains. The genomic analysis revealed the presence of cry1Aa18, cry1Ac5, cry1Ia44, and cry2Aa9 pesticidal genes. Virulence factor genes such as phospholipases (plcA, piplc), metalloproteases (inhA), hemolysins (cytK, hlyIII, hblA, hblC, hblD), and enterotoxins (nheA, nheB, nheC) were also identified. The combined use of the genomic and proteomic data indicated the expression of Cry1Aa18, Cry1Ac5, and Cry2Aa9 proteins, with Cry1Ac5 being the most abundant. InhA1 also was expressed and may contribute to Bt TOL651 pathogenicity. These results provide Bt TOL651 as a new tool for the biocontrol of lepidopteran pests.


Sujet(s)
Bacillus thuringiensis , Papillons de nuit , Animaux , Bacillus thuringiensis/génétique , Bacillus thuringiensis/composition chimique , Facteurs de virulence/génétique , Protéomique , Phylogenèse , Endotoxines/génétique , Endotoxines/toxicité , Larve , Insectes , Génomique , Hémolysines/génétique , Hémolysines/toxicité , Protéines bactériennes/génétique , Protéines bactériennes/toxicité , Lutte biologique contre les nuisibles/méthodes
18.
J Virol Methods ; 315: 114710, 2023 05.
Article de Anglais | MEDLINE | ID: mdl-36914098

RÉSUMÉ

A plant-based heterologous expression system is an attractive option for recombinant protein production because it is based on a eukaryotic system of high feasibility, and low biological risks. Frequently, binary vector systems are used for transient gene-expression in plants. However, plant virus vector-based systems offer advantages for higher protein yields due to their self-replicating machinery. In the present study, we show an efficient protocol using a plant virus vector based on a tobravirus, pepper ringspot virus, that was employed for transient expression of severe acute respiratory syndrome coronavirus 2 partial gene fragments of the spike (named S1-N) and the nucleocapsid (named N) proteins in Nicotiana benthamiana plants. Purified proteins yield of 40-60 µg/g of fresh leaves were obtained. Both proteins, S1-N and N, showed high and specific reactivities against convalescent patients' sera by the enzyme-linked immunosorbent assay format. The advantages and critical points in using this plant virus vector are discussed.


Sujet(s)
COVID-19 , Virus à ARN , Humains , SARS-CoV-2/génétique , Protéines recombinantes , Test ELISA , Glycoprotéine de spicule des coronavirus/génétique
19.
Viruses ; 15(3)2023 03 15.
Article de Anglais | MEDLINE | ID: mdl-36992466

RÉSUMÉ

In recent decades, waves of yellow fever virus (YFV) from the Amazon Rainforest have spread and caused outbreaks in other regions of Brazil, including the Cerrado, a savannah-like biome through which YFV usually moves before arriving at the Atlantic Forest. To identify the vectors involved in the maintenance of the virus in semiarid environments, an entomological survey was conducted after confirmation of yellow fever (YF) epizootics at the peak of the dry season in the Cerrado areas of the state of Minas Gerais. In total, 917 mosquitoes from 13 taxa were collected and tested for the presence of YFV. Interestingly, mosquitoes of the Sabethes genus represented 95% of the diurnal captured specimens, displaying a peak of biting activity never previously recorded, between 4:30 and 5:30 p.m. Molecular analysis identified three YFV-positive pools, two from Sabethes chloropterus-from which near-complete genomes were generated-and one from Sa. albiprivus, whose low viral load prevented sequencing. Sa. chloropterus was considered the primary vector due to the high number of copies of YFV RNA and the high relative abundance detected. Its bionomic characteristics allow its survival in dry places and dry time periods. For the first time in Brazil, Sa. albiprivus was found to be naturally infected with YFV and may have played a role as a secondary vector. Despite its high relative abundance, fewer copies of viral RNA were found, as well as a lower Minimum Infection Rate (MIR). Genomic and phylogeographic analysis showed that the virus clustered in the sub-lineage YFVPA-MG, which circulated in Pará in 2017 and then spread into other regions of the country. The results reported here contribute to the understanding of the epidemiology and mechanisms of YFV dispersion and maintenance, especially in adverse weather conditions. The intense viral circulation, even outside the seasonal period, increases the importance of surveillance and YFV vaccination to protect human populations in affected areas.


Sujet(s)
Culicidae , Virus de la fièvre jaune , Humains , Animaux , Virus de la fièvre jaune/génétique , Saisons , Brésil/épidémiologie , Vecteurs moustiques
20.
Arch Virol ; 168(1): 29, 2023 Jan 04.
Article de Anglais | MEDLINE | ID: mdl-36598610

RÉSUMÉ

The cotton boll weevil (CBW; Anthonomus grandis; Coleoptera: Curculionidae) is considered the major insect pest of cotton, causing considerable losses in yield and fiber quality. An increase in the boll weevil population due to increasingly inefficient chemical control measures is of great concernamong cotton producers. The absence of conventional or transgenic cultivars with minimal resistance to CBW has stimulated the search for new molecular and biological tools for efficient control of this insect pest. In this study, we used a metagenomic approach based on RNA deep sequencing to investigate the presence of viruses and coding viral RNA in apparently healthy native adult CBW insects collected from cotton crops in Mato Grosso state, Brazil. Using an Illumina HiSeq 2000 paired-end platform, 138,798 virus-related reads were obtained, and a consensus sequence of a putative new virus, 10,632 nucleotides in length, was assembled. The sequences of the 5' and 3' untranslated regions (UTRs) were determined by rapid amplification of cDNA ends (RACE), followed by Nanopore sequencing. The complete genome sequence included a 5'-UTR (1,158 nucleotides), a 3'-UTR (561 nucleotides), and a single ORF of 8,913 nucleotides encoding a large polyprotein. Sequence analysis of the putative polyprotein showed several regions with high sequence similarity to structural and non-structural proteins of viruses of the family Iflaviridae. Pairwise alignments of polyprotein amino acid sequences showed the highest sequence identity (32.13%) to a partial polyprotein sequence of a putative iflavirus (QKN89051.1) found in samples from wild zoo birds in China. Phylogenetic analysis based on full polyprotein sequences of different iflaviruses indicated that this new picorna-like virus is most closely related to iflaviruses found in lepidopteran insects, and it was therefore tentatively named "Anthonomus grandis iflavirus 1" (AgIV-1). This is, to our knowledge, the first complete viral genome sequence found in CBW, and it could provide a basis for further studies about the infectivity and transmission of this virus and its possible association with symptoms or acute disease. AgIV-1 could potentially be used to develop biological or molecular tools, such as a viral vector to carry interfering RNA molecules for CBW control.


Sujet(s)
Coléoptères , Virus , Charançons , Animaux , Phylogenèse , Virus/génétique , Nucléotides , ARN , Gossypium
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...