Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
1.
Phys Med ; 123: 103406, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38875931

RÉSUMÉ

PURPOSE: Ionisation chamber based reference dosimetry in magnetic resonance linear accelerators (MRL) aimed for radiotherapy requires correction for recombination losses. Published studies have found that such corrections can be carried out using the two-voltage method. These studies have, however, not included comparison with recombination corrections based on the Niatel method, which can be seen as a robust reference method due to its clear separation of initial and volume recombination and its explicit account of the pulsed nature of the dose delivery. The primary objective of this work therefore was to carry out such a comparison. MATERIALS AND METHODS: Four Farmer-type chambers (PTW-30006 and PTW-30013) were placed in a water phantom in 1.5 T Elekta Unity MRL. The chambers were oriented antiparallel or perpendicular to the static magnetic field B0 and irradiated at a source-to-surface distance of 133.5 cm with a 10 × 10 cm2 field size. RESULTS: The two-voltage method gave results in agreement (within 0.1%) with the recombination corrections derived from the Niatel method. The recombination corrections from three Niatel parameter sets (one based on a Varian Truebeam and two obtained directly in the MRL) deviated less than 0.1% from each other. A systematic shift in the recombination correction of less than 0.05% was observed if polarity corrections were not applied. CONCLUSIONS: The study supports the use of the two-voltage method in MRLs based on its excellent agreement with the Niatel method. This work, therefore, complements existing knowledge as previous studies have not included a comparison with the Niatel method.


Sujet(s)
Champs magnétiques , Radiométrie , Radiométrie/instrumentation , Accélérateurs de particules , Fantômes en imagerie
2.
Semin Radiat Oncol ; 34(1): 120-128, 2024 01.
Article de Anglais | MEDLINE | ID: mdl-38105086

RÉSUMÉ

The recent introduction of a commercial 1.5 T MR-linac system has considerably improved the image quality of the patient acquired in the treatment unit as well as enabling online adaptive radiation therapy (oART) treatment strategies. Quality Assurance (QA) of this new technology requires new methodology that allows for the high field MR in a linac environment. The presence of the magnetic field requires special attention to the phantoms, detectors, and tools to perform QA. Due to the design of the system, the integrated megavoltage imager (MVI) is essential for radiation beam calibrations and QA. Additionally, the alignment between the MR image system and the radiation isocenter must be checked. The MR-linac system has vendor-supplied phantoms for calibration and QA tests. However, users have developed their own routine QA systems to independently check that the machine is performing as required, as to ensure we are able to deliver the intended dose with sufficient certainty. The aim of this work is therefore to review the MR-linac specific QA procedures reported in the literature.


Sujet(s)
Accélérateurs de particules , Assurance de la qualité des soins de santé , Humains , Planification de radiothérapie assistée par ordinateur/méthodes , Fantômes en imagerie , Imagerie par résonance magnétique/méthodes
3.
Z Med Phys ; 33(4): 567-577, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-36990882

RÉSUMÉ

PURPOSE: The precision of the dose delivery in radiation therapy with high-field MR-linacs is challenging due to the substantial variation in the beam attenuation of the patient positioning system (PPS) (the couch and coils) as a function of the gantry angle. This work aimed to compare the attenuation of two PPSs located at two different MR-linac sites through measurements and calculations in the treatment planning system (TPS). METHODS: Attenuation measurements were performed at every 1° gantry angle at the two sites with a cylindrical water phantom with a Farmer chamber inserted along the rotational axis of the phantom. The phantom was positioned with the chamber reference point (CRP) at the MR-linac isocentre. A compensation strategy was applied to minimise sinusoidal measurement errors due to, e.g. air cavity or setup. A series of tests were performed to assess the sensitivity to measurement uncertainties. The dose to a model of the cylindrical water phantom with the PPS added was calculated in the TPS (Monaco v5.4 as well as in a development version Dev of an upcoming release), for the same gantry angles as for the measurements. The TPS PPS model dependency of the dose calculation voxelisation resolution was also investigated. RESULTS: A comparison of the measured attenuation of the two PPSs yielded differences of less than 0.5% for most gantry angles. The maximum deviation between the attenuation measurements for the two different PPSs exceeded ±1% at two specific gantry angles 115° and 245°, where the beam traverses the most complex PPS structures. The attenuation increases from 0% to 25% in 15° intervals around these angles. The measured and calculated attenuation, as calculated in v5.4, was generally within 1-2% with a systematic overestimation of the attenuation for gantry angles around 180°, as well as a maximum error of 4-5% for a few discrete angles in 10° gantry angle intervals around the complex PPS structures. The PPS modelling was improved compared to v5.4 in Dev, especially around 180°, and the results of those calculations were within ±1%, but with a similar 4% maximum deviation for the most complex PPS structures. CONCLUSIONS: Generally, the two tested PPS structures exhibit very similar attenuation as a function of the gantry angle, including the angles with a steep change in attenuation. Both TPS versions, v5.4 and Dev delivered clinically acceptable accuracy of the calculated dose, as the differences in the measurements were overall better than ±2%. Additionally, Dev improved the accuracy of the dose calculation to ±1% for gantry angles around 180°.


Sujet(s)
Radiométrie , Planification de radiothérapie assistée par ordinateur , Humains , Planification de radiothérapie assistée par ordinateur/méthodes , Dosimétrie en radiothérapie , Radiométrie/méthodes , Accélérateurs de particules , Fantômes en imagerie , Eau
4.
Australas Phys Eng Sci Med ; 41(4): 945-955, 2018 Dec.
Article de Anglais | MEDLINE | ID: mdl-30259333

RÉSUMÉ

Multileaf-collimator (MLC) defined small fields in radiotherapy are used in high dose, ultra-conformal techniques such as stereotactic radiotherapy and stereotactic radiosurgery. Proximity to critical structures and irreversible damage arising from inaccurate delivery mean that correct positioning of the MLC system is of the utmost importance. Some of the existing techniques for MLC positioning quality assurance make use of electronic portal imaging device (EPID) images. However, conventional collimation verification algorithms based on the full width at half maximum (FWHM) fail when applied to small field images acquired by an EPID due to overlapping aperture penumbrae, lateral electron disequilibrium and radiation source occlusion. The objective of this study was to investigate sub-pixel edge detection and other techniques with the aim of developing an automatic and autonomous EPID-based method suitable for MLC positional verification of small static fields with arbitrary shapes. Methods investigated included derivative interpolation, Laplacian of Gaussian (LoG) and an algorithm based on the partial area effect hypothesis. None of these methods were found to be suitable for MLC positioning verification in small field conditions. A method is proposed which uses a manufacturer-specific empirically modified FWHM algorithm which shows improvement over the conventional techniques in the small field size range. With a measured mean absolute difference from planned position for Varian linacs of 0.01 ± 0.26 mm, compared with the erroneous FWHM value of 0.70 ± 0.51 mm. For Elekta linacs the proposed algorithm returned 0.26 ± 0.25 mm, in contrast to the FWHM result of 1.79 ± 1.07 mm.


Sujet(s)
Traitement d'image par ordinateur/méthodes , Radiométrie/méthodes , Radiothérapie/méthodes , Algorithmes , Loi normale , Assurance de la qualité des soins de santé , Radiothérapie/normes , Reproductibilité des résultats
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE