Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 105
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
PLoS Biol ; 22(1): e3002462, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38289969

RÉSUMÉ

Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.


Sujet(s)
Sclérose latérale amyotrophique , Animaux , Souris , Sclérose latérale amyotrophique/traitement médicamenteux , Sclérose latérale amyotrophique/génétique , Sclérose latérale amyotrophique/métabolisme , Cystéine/génétique , Mutation , Superoxide dismutase/génétique , Superoxide dismutase/composition chimique , Superoxide dismutase/métabolisme , Superoxide dismutase-1/génétique
3.
Biochemistry ; 59(44): 4238-4249, 2020 11 10.
Article de Anglais | MEDLINE | ID: mdl-33135413

RÉSUMÉ

The metalloenzyme acireductone dioxygenase (ARD) shows metal-dependent physical and enzymatic activities depending upon the metal bound in the active site. The Fe(II)-bound enzyme catalyzes the penultimate step of the methionine salvage pathway, converting 1,2-dihydroxy-5-(methylthio)pent-1-en-3-one (acireductone) into formate and the ketoacid precursor of methionine, 2-keto-4-thiomethyl-2-oxobutanoate, using O2 as the oxidant. If Ni(II) is bound, an off-pathway shunt occurs, producing 3-methylthiopropionate, formate, and carbon monoxide from the same acireductone substrate. The solution structure of the Fe(II)-bound human enzyme, HsARD, is described and compared with the structures of Ni-bound forms of the closely related mouse enzyme, MmARD. Potential rationales for the different reactivities of the two isoforms are discussed. The human enzyme has been found to regulate the activity of matrix metalloproteinase I (MMP-I), which is involved in tumor metastasis, by binding the cytoplasmic transmembrane tail peptide of MMP-I. Nuclear magnetic resonance titration of HsARD with the MMP-I tail peptide permits identification of the peptide binding site on HsARD, a cleft anterior to the metal binding site adjacent to a dynamic proline-rich loop.


Sujet(s)
Dioxygenases/composition chimique , Dioxygenases/métabolisme , Fer/métabolisme , Matrix metalloproteinase 1/composition chimique , Matrix metalloproteinase 1/métabolisme , Domaine catalytique , Humains , Modèles moléculaires , Solutions
4.
Biochemistry ; 57(22): 3134-3145, 2018 06 05.
Article de Anglais | MEDLINE | ID: mdl-29630349

RÉSUMÉ

Cystathionine ß-synthase (CBS) is a key regulator of sulfur amino acid metabolism, taking homocysteine from the methionine cycle to the biosynthesis of cysteine via the trans-sulfuration pathway. CBS is also a predominant source of H2S biogenesis. Roles for CBS have been reported for neuronal death pursuant to cerebral ischemia, promoting ovarian tumor growth, and maintaining drug-resistant phenotype by controlling redox behavior and regulating mitochondrial bioenergetics. The trans-sulfuration pathway is well-conserved in eukaryotes, but the analogous enzymes have different enzymatic behavior in different organisms. CBSs from the higher organisms contain a heme in an N-terminal domain. Though the presence of the heme, whose functions in CBSs have yet to be elucidated, is biochemically interesting, it hampers UV-vis absorption spectroscopy investigations of pyridoxal 5'-phosphate (PLP) species. CBS from Saccharomyces cerevisiae (yCBS) naturally lacks the heme-containing N-terminal domain, which makes it an ideal model for spectroscopic studies of the enzymological reaction catalyzed and allows structural studies of the basic yCBS catalytic core (yCBS-cc). Here we present the crystal structure of yCBS-cc, solved to 1.5 Å. Crystal structures of yCBS-cc in complex with enzymatic reaction intermediates have been captured, providing a structural basis for residues involved in catalysis. Finally, the structure of the yCBS-cc cofactor complex generated by incubation with an inhibitor shows apparent off-pathway chemistry not normally seen with CBS.


Sujet(s)
Cystathionine beta-synthase/composition chimique , Cystathionine beta-synthase/physiologie , Catalyse , Cystathionine beta-synthase/métabolisme , Cystéine/biosynthèse , Cystéine/composition chimique , Hème/métabolisme , Humains , Cinétique , Modèles moléculaires , Oxydoréduction , Phosphate de pyridoxal/métabolisme , Saccharomyces cerevisiae/enzymologie , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/physiologie
6.
Biochemistry ; 56(37): 4951-4961, 2017 09 19.
Article de Anglais | MEDLINE | ID: mdl-28816437

RÉSUMÉ

Potent mechanism-based inactivators can be rationally designed against pyridoxal 5'-phosphate (PLP)-dependent drug targets, such as ornithine aminotransferase (OAT) or γ-aminobutyric acid aminotransferase (GABA-AT). An important challenge, however, is the lack of selectivity toward other PLP-dependent, off-target enzymes, because of similarities in mechanisms of all PLP-dependent aminotransferase reactions. On the basis of complex crystal structures, we investigate the inactivation mechanism of OAT, a hepatocellular carcinoma target, by (1R,3S,4S)-3-amino-4-fluorocyclopentane-1-carboxylic acid (FCP), a known inactivator of GABA-AT. A crystal structure of OAT and FCP showed the formation of a ternary adduct. This adduct can be rationalized as occurring via an enamine mechanism of inactivation, similar to that reported for GABA-AT. However, the crystal structure of an off-target, PLP-dependent enzyme, aspartate aminotransferase (Asp-AT), in complex with FCP, along with the results of attempted inhibition assays, suggests that FCP is not an inactivator of Asp-AT, but rather an alternate substrate. Turnover of FCP by Asp-AT is also supported by high-resolution mass spectrometry. Amid existing difficulties in achieving selectivity of inactivation among a large number of PLP-dependent enzymes, the obtained results provide evidence that a desirable selectivity could be achieved, taking advantage of subtle structural and mechanistic differences between a drug-target enzyme and an off-target enzyme, despite their largely similar substrate binding sites and catalytic mechanisms.


Sujet(s)
4-Aminobutyrate transaminase/antagonistes et inhibiteurs , Aspartate aminotransferases/antagonistes et inhibiteurs , Cycloleucine/analogues et dérivés , Antienzymes/pharmacologie , Modèles moléculaires , Ornithine-oxo-acid transaminase/antagonistes et inhibiteurs , Phosphate de pyridoxal/métabolisme , 4-Aminobutyrate transaminase/composition chimique , 4-Aminobutyrate transaminase/métabolisme , Aspartate aminotransferases/composition chimique , Aspartate aminotransferases/génétique , Aspartate aminotransferases/métabolisme , Sites de fixation , Domaine catalytique , Cristallographie aux rayons X , Cycloleucine/composition chimique , Cycloleucine/métabolisme , Cycloleucine/pharmacologie , Bases de données chimiques , Bases de données de protéines , Antienzymes/composition chimique , Antienzymes/métabolisme , Protéines Escherichia coli/antagonistes et inhibiteurs , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/génétique , Protéines Escherichia coli/métabolisme , Humains , Ligands , Conformation moléculaire , Ornithine-oxo-acid transaminase/composition chimique , Ornithine-oxo-acid transaminase/génétique , Ornithine-oxo-acid transaminase/métabolisme , Conformation des protéines , Phosphate de pyridoxal/composition chimique , Pyridoxamine/composition chimique , Pyridoxamine/métabolisme , Protéines recombinantes/composition chimique , Protéines recombinantes/métabolisme , Similitude structurale de protéines , Spécificité du substrat
7.
Chem Rev ; 117(15): 10474-10501, 2017 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-28731690

RÉSUMÉ

Acireductone dioxygenase (ARD) from the methionine salvage pathway (MSP) is a unique enzyme that exhibits dual chemistry determined solely by the identity of the divalent transition-metal ion (Fe2+ or Ni2+) in the active site. The Fe2+-containing isozyme catalyzes the on-pathway reaction using substrates 1,2-dihydroxy-3-keto-5-methylthiopent-1-ene (acireductone) and dioxygen to generate formate and the ketoacid precursor of methionine, 2-keto-4-methylthiobutyrate, whereas the Ni2+-containing isozyme catalyzes an off-pathway shunt with the same substrates, generating methylthiopropionate, carbon monoxide, and formate. The dual chemistry of ARD was originally discovered in the bacterium Klebsiella oxytoca, but it has recently been shown that mammalian ARD enzymes (mouse and human) are also capable of catalyzing metal-dependent dual chemistry in vitro. This is particularly interesting, since carbon monoxide, one of the products of off-pathway reaction, has been identified as an antiapoptotic molecule in mammals. In addition, several biochemical and genetic studies have indicated an inhibitory role of human ARD in cancer. This comprehensive review describes the biochemical and structural characterization of the ARD family, the proposed experimental and theoretical approaches to establishing mechanisms for the dual chemistry, insights into the mechanism based on comparison with structurally and functionally similar enzymes, and the applications of this research to the field of artificial metalloenzymes and synthetic biology.


Sujet(s)
Dioxygenases/composition chimique , Dioxygenases/métabolisme , Fer/métabolisme , Enzymes multifonctionnelles/composition chimique , Enzymes multifonctionnelles/métabolisme , Nickel/métabolisme , Animaux , Humains , Klebsiella oxytoca/enzymologie , Modèles moléculaires , Structure moléculaire
8.
Protein Eng Des Sel ; 30(3): 271-278, 2017 03 01.
Article de Anglais | MEDLINE | ID: mdl-28338942

RÉSUMÉ

Benzaldehyde dehydrogenase from Pseudomonas putida (PpBADH) belongs to the Class 3 aldehyde dehydrogenase (ALDH) family. The Class 3 ALDHs are unusual in that they are generally dimeric (rather than tetrameric), relatively non-specific and utilize both NAD+ and NADP+. To date, X-ray structures of three Class 3 ALDHs have been determined, of which only two have cofactor bound, both in the NAD+ form. Here we report the crystal structure of PpBADH in complex with NADP+ and a thioacyl intermediate adduct. The overall architecture of PpBADH resembles that of most other members of the ALDH superfamily, and the cofactor binding residues are well conserved. Conversely, the pattern of cofactor binding for the rat Class 3 ALDH differs from that of PpBADH and other ALDHs. This has been interpreted in terms of a different mechanism for the rat enzyme. Comparison with the PpBADH structure, as well as multiple sequence alignments, suggest that one of two conserved glutamates, at positions 215 (209 in rat) and 337 (333 in rat), would act as the general base necessary to hydrolyze the thioacyl intermediate. While the latter is the general base in the rat Class 3 ALDH, site-specific mutagenesis indicates that Glu215 is the likely candidate for PpBADH, a result more typical of the Class 1 and 2 ALDH families. Finally, this study shows that hydride transfer is not rate limiting, lending further credence to the suggestion that PpBADH is more similar to the Class 1 and 2 ALDHs than it is to other Class 3 ALDHs.


Sujet(s)
Aldehyde oxidoreductases/composition chimique , NADP/composition chimique , Pseudomonas putida/enzymologie , Aldehyde oxidoreductases/génétique , Substitution d'acide aminé , Animaux , Mutagenèse dirigée , Mutation faux-sens , NADP/génétique , Domaines protéiques , Pseudomonas putida/génétique , Rats
9.
Proc Natl Acad Sci U S A ; 114(15): 3891-3896, 2017 04 11.
Article de Anglais | MEDLINE | ID: mdl-28348215

RÉSUMÉ

The Bacillus subtilis protein regulator of the gabTD operon and its own gene (GabR) is a transcriptional activator that regulates transcription of γ-aminobutyric acid aminotransferase (GABA-AT; GabT) upon interactions with pyridoxal-5'-phosphate (PLP) and GABA, and thereby promotes the biosynthesis of glutamate from GABA. We show here that the external aldimine formed between PLP and GABA is apparently responsible for triggering the GabR-mediated transcription activation. Details of the "active site" in the structure of the GabR effector-binding/oligomerization (Eb/O) domain suggest that binding a monocarboxylic γ-amino acid such as GABA should be preferred over dicarboxylic acid ligands. A reactive GABA analog, (S)-4-amino-5-fluoropentanoic acid (AFPA), was used as a molecular probe to examine the reactivity of PLP in both GabR and a homologous aspartate aminotransferase (Asp-AT) from Escherichia coli as a control. A comparison between the structures of the Eb/O-PLP-AFPA complex and Asp-AT-PLP-AFPA complex revealed that GabR is incapable of facilitating further steps of the transamination reaction after the formation of the external aldimine. Results of in vitro and in vivo assays using full-length GabR support the conclusion that AFPA is an agonistic ligand capable of triggering GabR-mediated transcription activation via formation of an external aldimine with PLP.


Sujet(s)
Bacillus subtilis/génétique , Protéines bactériennes/génétique , Régulation de l'expression des gènes bactériens , Phosphate de pyridoxal/métabolisme , Acide gamma-amino-butyrique/métabolisme , Bacillus subtilis/effets des médicaments et des substances chimiques , Bacillus subtilis/métabolisme , Protéines bactériennes/composition chimique , Protéines bactériennes/métabolisme , Sites de fixation , Cristallographie aux rayons X , Spectroscopie par résonance magnétique , Opéron , Acides pentanoïques/métabolisme , Acides pentanoïques/pharmacologie , Régions promotrices (génétique) , Domaines protéiques , Phosphate de pyridoxal/composition chimique , Phosphate de pyridoxal/génétique , Bases de Schiff , Transcription génétique , Acide gamma-amino-butyrique/composition chimique , Acide gamma-amino-butyrique/génétique
10.
Biochemistry ; 56(17): 2304-2314, 2017 05 02.
Article de Anglais | MEDLINE | ID: mdl-28346784

RÉSUMÉ

The Mycobacterium tuberculosis (Mtb) serine protease Hip1 (hydrolase important for pathogenesis; Rv2224c) promotes tuberculosis (TB) pathogenesis by impairing host immune responses through proteolysis of a protein substrate, Mtb GroEL2. The cell surface localization of Hip1 and its immunomodulatory functions make Hip1 a good drug target for new adjunctive immune therapies for TB. Here, we report the crystal structure of Hip1 to a resolution of 2.6 Å and the kinetic studies of the enzyme against model substrates and the protein GroEL2. The structure shows a two-domain protein, one of which contains the catalytic residues that are the signature of a serine protease. Surprisingly, a threonine is located within the active site close enough to hydrogen bond with the catalytic residues Asp463 and His490. Mutation of this residue, Thr466, to alanine established its importance for function. Our studies provide insights into the structure of a member of a novel family of proteases. Knowledge of the Hip1 structure will aid in designing inhibitors that could block Hip1 activity.


Sujet(s)
Protéines bactériennes/métabolisme , Modèles moléculaires , Mycobacterium tuberculosis/enzymologie , Protéases à sérine/métabolisme , Substitution d'acide aminé , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Biocatalyse , Domaine catalytique , Dichroïsme circulaire , Cristallographie aux rayons X , Stabilité enzymatique , Méthionine/composition chimique , Mutagenèse dirigée , Mutation , Fragments peptidiques/composition chimique , Fragments peptidiques/génétique , Fragments peptidiques/métabolisme , Conformation des protéines , Protéolyse , Protéines de fusion recombinantes/composition chimique , Protéines de fusion recombinantes/métabolisme , Protéines recombinantes/composition chimique , Protéines recombinantes/métabolisme , Sélénométhionine/composition chimique , Protéases à sérine/composition chimique , Protéases à sérine/génétique , Similitude structurale de protéines , Spécificité du substrat
11.
Protein Eng Des Sel ; 30(3): 197-204, 2017 03 01.
Article de Anglais | MEDLINE | ID: mdl-28062648

RÉSUMÉ

Acireductone dioxygenase (ARD) from the methionine salvage pathway of Klebsiella oxytoca is the only known naturally occurring metalloenzyme that catalyzes different reactions in vivo based solely on the identity of the divalent transition metal ion (Fe2+ or Ni2+) bound in the active site. The iron-containing isozyme catalyzes the cleavage of substrate 1,2-dihydroxy-3-keto-5-(thiomethyl)pent-1-ene (acireductone) by O2 to formate and the ketoacid precursor of methionine, whereas the nickel-containing isozyme uses the same substrates to catalyze an off-pathway shunt to form methylthiopropionate, carbon monoxide and formate. This dual chemistry was recently demonstrated in vitro by ARD from Mus musculus (MmARD), providing the first example of a mammalian ARD exhibiting metal-dependent catalysis. We now show that human ARD (HsARD) is also capable of metal-dependent dual chemistry. Recombinant HsARD was expressed and purified to obtain a homogeneous enzyme with a single transition metal ion bound. As with MmARD, the Fe2+-bound HsARD shows the highest activity and catalyzes on-pathway chemistry, whereas Ni2+, Co2+ or Mn2+ forms catalyze off-pathway chemistry. The thermal stability of the HsARD isozymes is a function of the metal ion identity, with Ni2+-bound HsARD being the most stable followed by Co2+ and Fe2+, and Mn2+-bound HsARD being the least stable. As with the bacterial ARD, solution NMR data suggest that HsARD isozymes can have significant structural differences depending upon the metal ion bound.


Sujet(s)
Dioxygenases/composition chimique , Métalloprotéines/composition chimique , Métaux lourds/composition chimique , Animaux , Catalyse , Dioxygenases/génétique , Stabilité enzymatique/génétique , Température élevée , Humains , Isoenzymes/composition chimique , Isoenzymes/génétique , Métalloprotéines/génétique , Souris , Résonance magnétique nucléaire biomoléculaire , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique
12.
Proc Natl Acad Sci U S A ; 113(43): E6572-E6581, 2016 10 25.
Article de Anglais | MEDLINE | ID: mdl-27791029

RÉSUMÉ

The transcription factor T-bet (Tbox protein expressed in T cells) is one of the master regulators of both the innate and adaptive immune responses. It plays a central role in T-cell lineage commitment, where it controls the TH1 response, and in gene regulation in plasma B-cells and dendritic cells. T-bet is a member of the Tbox family of transcription factors; however, T-bet coordinately regulates the expression of many more genes than other Tbox proteins. A central unresolved question is how T-bet is able to simultaneously recognize distant Tbox binding sites, which may be located thousands of base pairs away. We have determined the crystal structure of the Tbox DNA binding domain (DBD) of T-bet in complex with a palindromic DNA. The structure shows a quaternary structure in which the T-bet dimer has its DNA binding regions splayed far apart, making it impossible for a single dimer to bind both sites of the DNA palindrome. In contrast to most other Tbox proteins, a single T-bet DBD dimer binds simultaneously to identical half-sites on two independent DNA. A fluorescence-based assay confirms that T-bet dimers are able to bring two independent DNA molecules into close juxtaposition. Furthermore, chromosome conformation capture assays confirm that T-bet functions in the direct formation of chromatin loops in vitro and in vivo. The data are consistent with a looping/synapsing model for transcriptional regulation by T-bet in which a single dimer of the transcription factor can recognize and coalesce distinct genetic elements, either a promoter plus a distant regulatory element, or promoters on two different genes.


Sujet(s)
Chromatine/composition chimique , ADN/composition chimique , Génome , Protéines à domaine boîte-T/composition chimique , Séquence d'acides aminés , Animaux , Sites de fixation , Chromatine/métabolisme , Cristallographie aux rayons X , ADN/génétique , ADN/métabolisme , Éléments activateurs (génétique) , Escherichia coli/génétique , Escherichia coli/métabolisme , Expression des gènes , Séquences répétées inversées , Souris , Modèles moléculaires , Régions promotrices (génétique) , Liaison aux protéines , Motifs et domaines d'intéraction protéique , Multimérisation de protéines , Structure quaternaire des protéines , Structure secondaire des protéines , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Alignement de séquences , Protéines à domaine boîte-T/génétique , Protéines à domaine boîte-T/métabolisme , Xenopus laevis
13.
Proc Natl Acad Sci U S A ; 113(34): 9587-92, 2016 08 23.
Article de Anglais | MEDLINE | ID: mdl-27482083

RÉSUMÉ

The aggregation of α-synuclein (aSyn) leading to the formation of Lewy bodies is the defining pathological hallmark of Parkinson's disease (PD). Rare familial PD-associated mutations in aSyn render it aggregation-prone; however, PD patients carrying wild type (WT) aSyn also have aggregated aSyn in Lewy bodies. The mechanisms by which WT aSyn aggregates are unclear. Here, we report that inflammation can play a role in causing the aggregation of WT aSyn. We show that activation of the inflammasome with known stimuli results in the aggregation of aSyn in a neuronal cell model of PD. The insoluble aggregates are enriched with truncated aSyn as found in Lewy bodies of the PD brain. Inhibition of the inflammasome enzyme caspase-1 by chemical inhibition or genetic knockdown with shRNA abated aSyn truncation. In vitro characterization confirmed that caspase-1 directly cleaves aSyn, generating a highly aggregation-prone species. The truncation-induced aggregation of aSyn is toxic to neuronal culture, and inhibition of caspase-1 by shRNA or a specific chemical inhibitor improved the survival of a neuronal PD cell model. This study provides a molecular link for the role of inflammation in aSyn aggregation, and perhaps in the pathogenesis of sporadic PD as well.


Sujet(s)
Caspase-1/génétique , Inflammasomes/métabolisme , Corps de Lewy/métabolisme , Neurones/métabolisme , Agrégats de protéines/génétique , alpha-Synucléine/génétique , Alun/pharmacologie , Caspase-1/métabolisme , Lignée cellulaire tumorale , Survie cellulaire/effets des médicaments et des substances chimiques , Dipeptides/pharmacologie , Régulation de l'expression des gènes , Humains , Interleukine-1 bêta/génétique , Interleukine-1 bêta/métabolisme , Corps de Lewy/effets des médicaments et des substances chimiques , Corps de Lewy/anatomopathologie , Lipopolysaccharides/pharmacologie , Neurones/effets des médicaments et des substances chimiques , Neurones/anatomopathologie , Nigéricine/pharmacologie , Petit ARN interférent/génétique , Petit ARN interférent/métabolisme , Transduction du signal , Ménadione/pharmacologie , alpha-Synucléine/composition chimique , alpha-Synucléine/métabolisme , para-Aminobenzoates/pharmacologie
14.
Proc Natl Acad Sci U S A ; 113(34): 9593-8, 2016 08 23.
Article de Anglais | MEDLINE | ID: mdl-27482103

RÉSUMÉ

Multiple system atrophy (MSA) is a sporadic orphan neurodegenerative disorder. No treatment is currently available to slow down the aggressive neurodegenerative process, and patients die within a few years after disease onset. The cytopathological hallmark of MSA is the accumulation of alpha-synuclein (α-syn) aggregates in affected oligodendrocytes. Several studies point to α-syn oligomerization and aggregation as a mediator of neurotoxicity in synucleinopathies including MSA. C-terminal truncation by the inflammatory protease caspase-1 has recently been implicated in the mechanisms that promote aggregation of α-syn in vitro and in neuronal cell models of α-syn toxicity. We present here an in vivo proof of concept of the ability of the caspase-1 inhibitor prodrug VX-765 to mitigate α-syn pathology and to mediate neuroprotection in proteolipid protein α-syn (PLP-SYN) mice, a transgenic mouse model of MSA. PLP-SYN and age-matched wild-type mice were treated for a period of 11 wk with VX-765 or placebo. VX-765 prevented motor deficits in PLP-SYN mice compared with placebo controls. More importantly, VX-765 was able to limit the progressive toxicity of α-syn aggregation by reducing its load in the striatum of PLP-SYN mice. Not only did VX-765 reduce truncated α-syn, but it also decreased its monomeric and oligomeric forms. Finally, VX-765 showed neuroprotective effects by preserving tyrosine hydroxylase-positive neurons in the substantia nigra of PLP-SYN mice. In conclusion, our results suggest that VX-765, a drug that was well tolerated in a 6 wk-long phase II trial in patients with epilepsy, is a promising candidate to achieve disease modification in synucleinopathies by limiting α-syn accumulation.


Sujet(s)
Caspase-1/génétique , Corps strié/effets des médicaments et des substances chimiques , Dipeptides/pharmacologie , Atrophie multisystématisée/traitement médicamenteux , Oligodendroglie/effets des médicaments et des substances chimiques , Substantia nigra/effets des médicaments et des substances chimiques , alpha-Synucléine/génétique , para-Aminobenzoates/pharmacologie , Animaux , Caspase-1/métabolisme , Essais cliniques comme sujet , Corps strié/métabolisme , Corps strié/anatomopathologie , Modèles animaux de maladie humaine , Régulation de l'expression des gènes , Humains , Souris , Souris transgéniques , Atrophie multisystématisée/génétique , Atrophie multisystématisée/métabolisme , Atrophie multisystématisée/anatomopathologie , Neurones/effets des médicaments et des substances chimiques , Neurones/métabolisme , Neurones/anatomopathologie , Oligodendroglie/métabolisme , Oligodendroglie/anatomopathologie , Agrégats de protéines/effets des médicaments et des substances chimiques , Agrégats de protéines/génétique , Protéolyse , Transduction du signal , Substantia nigra/métabolisme , Substantia nigra/anatomopathologie , Tyrosine 3-monooxygenase/génétique , Tyrosine 3-monooxygenase/métabolisme , alpha-Synucléine/composition chimique , alpha-Synucléine/métabolisme
15.
Biochemistry ; 55(9): 1398-407, 2016 Mar 08.
Article de Anglais | MEDLINE | ID: mdl-26858196

RÉSUMÉ

The two acireductone dioxygenase (ARD) isozymes from the methionine salvage pathway of Klebsiella oxytoca are the only known pair of naturally occurring metalloenzymes with distinct chemical and physical properties determined solely by the identity of the divalent transition metal ion (Fe(2+) or Ni(2+)) in the active site. We now show that this dual chemistry can also occur in mammals. ARD from Mus musculus (MmARD) was studied to relate the metal ion identity and three-dimensional structure to enzyme function. The iron-containing isozyme catalyzes the cleavage of 1,2-dihydroxy-3-keto-5-(thiomethyl)pent-1-ene (acireductone) by O2 to formate and the ketoacid precursor of methionine, which is the penultimate step in methionine salvage. The nickel-bound form of ARD catalyzes an off-pathway reaction resulting in formate, carbon monoxide (CO), and 3-(thiomethyl) propionate. Recombinant MmARD was expressed and purified to obtain a homogeneous enzyme with a single transition metal ion bound. The Fe(2+)-bound protein, which shows about 10-fold higher activity than that of others, catalyzes on-pathway chemistry, whereas the Ni(2+), Co(2+), or Mn(2+) forms exhibit off-pathway chemistry, as has been seen with ARD from Klebsiella. Thermal stability of the isozymes is strongly affected by the metal ion identity, with Ni(2+)-bound MmARD being the most stable, followed by Co(2+) and Fe(2+), and Mn(2+)-bound ARD being the least stable. Ni(2+)- and Co(2+)-bound MmARD were crystallized, and the structures of the two proteins found to be similar. Enzyme-ligand complexes provide insight into substrate binding, metal coordination, and the catalytic mechanism.


Sujet(s)
Dioxygenases/composition chimique , Dioxygenases/physiologie , Métaux/composition chimique , Métaux/métabolisme , Animaux , Souris , Structure secondaire des protéines , Diffraction des rayons X
16.
Proc Natl Acad Sci U S A ; 112(28): 8756-61, 2015 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-26124091

RÉSUMÉ

Parkinson's disease (PD), primarily caused by selective degeneration of midbrain dopamine (mDA) neurons, is the most prevalent movement disorder, affecting 1-2% of the global population over the age of 65. Currently available pharmacological treatments are largely symptomatic and lose their efficacy over time with accompanying severe side effects such as dyskinesia. Thus, there is an unmet clinical need to develop mechanism-based and/or disease-modifying treatments. Based on the unique dual role of the nuclear orphan receptor Nurr1 for development and maintenance of mDA neurons and their protection from inflammation-induced death, we hypothesize that Nurr1 can be a molecular target for neuroprotective therapeutic development for PD. Here we show successful identification of Nurr1 agonists sharing an identical chemical scaffold, 4-amino-7-chloroquinoline, suggesting a critical structure-activity relationship. In particular, we found that two antimalarial drugs, amodiaquine and chloroquine stimulate the transcriptional function of Nurr1 through physical interaction with its ligand binding domain (LBD). Remarkably, these compounds were able to enhance the contrasting dual functions of Nurr1 by further increasing transcriptional activation of mDA-specific genes and further enhancing transrepression of neurotoxic proinflammatory gene expression in microglia. Importantly, these compounds significantly improved behavioral deficits in 6-hydroxydopamine lesioned rat model of PD without any detectable signs of dyskinesia-like behavior. These findings offer proof of principle that small molecules targeting the Nurr1 LBD can be used as a mechanism-based and neuroprotective strategy for PD.


Sujet(s)
Comportement animal/effets des médicaments et des substances chimiques , Membre-2 du groupe A de la sous-famille-4 de récepteurs nucléaires/agonistes , Maladie de Parkinson/psychologie , Amodiaquine/métabolisme , Amodiaquine/pharmacologie , Animaux , Chloroquine/métabolisme , Chloroquine/pharmacologie , Modèles animaux de maladie humaine , Ligands , Neurogenèse , Membre-2 du groupe A de la sous-famille-4 de récepteurs nucléaires/métabolisme , Oxidopamine/toxicité , Maladie de Parkinson/traitement médicamenteux , Maladie de Parkinson/anatomopathologie , Rats
17.
Proc Natl Acad Sci U S A ; 112(25): 7821-6, 2015 Jun 23.
Article de Anglais | MEDLINE | ID: mdl-26056265

RÉSUMÉ

Over 30% of patients with amyotrophic lateral sclerosis (ALS) exhibit cognitive deficits indicative of frontotemporal dementia (FTD), suggesting a common pathogenesis for both diseases. Consistent with this hypothesis, neuronal and glial inclusions rich in TDP43, an essential RNA-binding protein, are found in the majority of those with ALS and FTD, and mutations in TDP43 and a related RNA-binding protein, FUS, cause familial ALS and FTD. TDP43 and FUS affect the splicing of thousands of transcripts, in some cases triggering nonsense-mediated mRNA decay (NMD), a highly conserved RNA degradation pathway. Here, we take advantage of a faithful primary neuronal model of ALS and FTD to investigate and characterize the role of human up-frameshift protein 1 (hUPF1), an RNA helicase and master regulator of NMD, in these disorders. We show that hUPF1 significantly protects mammalian neurons from both TDP43- and FUS-related toxicity. Expression of hUPF2, another essential component of NMD, also improves survival, whereas inhibiting NMD prevents rescue by hUPF1, suggesting that hUPF1 acts through NMD to enhance survival. These studies emphasize the importance of RNA metabolism in ALS and FTD, and identify a uniquely effective therapeutic strategy for these disorders.


Sujet(s)
Sclérose latérale amyotrophique/physiopathologie , Modèles biologiques , Neurones/effets des médicaments et des substances chimiques , Transactivateurs/physiologie , Survie cellulaire , Humains , Neuroprotecteurs/pharmacologie , Dégradation des ARNm non-sens , RNA helicases
18.
Protein Sci ; 24(5): 762-78, 2015 May.
Article de Anglais | MEDLINE | ID: mdl-25627867

RÉSUMÉ

A scoring method for the prediction of catalytically important residues in enzyme structures is presented and used to examine the participation of distal residues in enzyme catalysis. Scores are based on the Partial Order Optimum Likelihood (POOL) machine learning method, using computed electrostatic properties, surface geometric features, and information obtained from the phylogenetic tree as input features. Predictions of distal residue participation in catalysis are compared with experimental kinetics data from the literature on variants of the featured enzymes; some additional kinetics measurements are reported for variants of Pseudomonas putida nitrile hydratase (ppNH) and for Escherichia coli alkaline phosphatase (AP). The multilayer active sites of P. putida nitrile hydratase and of human phosphoglucose isomerase are predicted by the POOL log ZP scores, as is the single-layer active site of P. putida ketosteroid isomerase. The log ZP score cutoff utilized here results in over-prediction of distal residue involvement in E. coli alkaline phosphatase. While fewer experimental data points are available for P. putida mandelate racemase and for human carbonic anhydrase II, the POOL log ZP scores properly predict the previously reported participation of distal residues.


Sujet(s)
Carbonic anhydrase II/composition chimique , Enzymes/composition chimique , Glucose 6-phosphate isomerase/composition chimique , Conformation des protéines , Carbonic anhydrase II/génétique , Catalyse , Enzymes/génétique , Escherichia coli/enzymologie , Glucose 6-phosphate isomerase/génétique , Humains , Apprentissage machine , Phylogenèse , Pseudomonas putida/enzymologie , Électricité statique , Propriétés de surface
19.
Neurotherapeutics ; 12(1): 12-8, 2015 Jan.
Article de Anglais | MEDLINE | ID: mdl-25472693

RÉSUMÉ

The retromer is an evolutionary conserved multiprotein complex involved in the sorting and retrograde trafficking of cargo from endosomal compartments to the Golgi network and to the cell surface. The neuronal retromer traffics the amyloid precursor protein away from the endosomes, a site where amyloid precursor protein is enzymatically cleaved into pathogenic fragments in Alzheimer's disease. In recent years, deficiencies in retromer-mediated transport have been implicated in several neurological and non-neurological diseases, including Parkinson's disease, suggesting that improving the efficacy of the retromer trafficking pathway would result in decreased pathology. We recently identified a new family of small molecules that appear to stabilize the interaction between members of the retromer complex and enhance its function in neurons: the retromer pharmacological chaperones. Here we discuss the role of these molecules in the improvement of retromer trafficking and endosomal dysfunction, as well as their potential as therapeutics for neurological and non-neurological disorders.


Sujet(s)
Maladie d'Alzheimer/traitement médicamenteux , Endosomes/anatomopathologie , Complexes multiprotéiques/métabolisme , Neuroprotecteurs/pharmacologie , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Animaux , Humains , Transport des protéines/effets des médicaments et des substances chimiques , Transport des protéines/physiologie
20.
Structure ; 22(6): 899-910, 2014 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-24882744

RÉSUMÉ

Most macromolecular X-ray structures are determined from cryocooled crystals, but it is unclear whether cryocooling distorts functionally relevant flexibility. Here we compare independently acquired pairs of high-resolution data sets of a model Michaelis complex of dihydrofolate reductase (DHFR), collected by separate groups at both room and cryogenic temperatures. These data sets allow us to isolate the differences between experimental procedures and between temperatures. Our analyses of multiconformer models and time-averaged ensembles suggest that cryocooling suppresses and otherwise modifies side-chain and main-chain conformational heterogeneity, quenching dynamic contact networks. Despite some idiosyncratic differences, most changes from room temperature to cryogenic temperature are conserved and likely reflect temperature-dependent solvent remodeling. Both cryogenic data sets point to additional conformations not evident in the corresponding room temperature data sets, suggesting that cryocooling does not merely trap preexisting conformational heterogeneity. Our results demonstrate that crystal cryocooling consistently distorts the energy landscape of DHFR, a paragon for understanding functional protein dynamics.


Sujet(s)
Protéines Escherichia coli/composition chimique , Dihydrofolate reductase/composition chimique , Basse température , Cristallisation , Cristallographie aux rayons X , Escherichia coli/enzymologie , Modèles moléculaires , Simulation de dynamique moléculaire , Conformation des protéines , Structure tertiaire des protéines , Électricité statique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE