Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Mol Psychiatry ; 26(6): 1980-1995, 2021 06.
Article de Anglais | MEDLINE | ID: mdl-32249816

RÉSUMÉ

Kaufman oculocerebrofacial syndrome (KOS) is a severe autosomal recessive disorder characterized by intellectual disability, developmental delays, microcephaly, and characteristic dysmorphisms. Biallelic mutations of UBE3B, encoding for a ubiquitin ligase E3B are causative for KOS. In this report, we characterize neuronal functions of its murine ortholog Ube3b and show that Ube3b regulates dendritic branching in a cell-autonomous manner. Moreover, Ube3b knockout (KO) neurons exhibit increased density and aberrant morphology of dendritic spines, altered synaptic physiology, and changes in hippocampal circuit activity. Dorsal forebrain-specific Ube3b KO animals show impaired spatial learning, altered social interactions, and repetitive behaviors. We further demonstrate that Ube3b ubiquitinates the catalytic γ-subunit of calcineurin, Ppp3cc, the overexpression of which phenocopies Ube3b loss with regard to dendritic spine density. This work provides insights into the molecular pathologies underlying intellectual disability-like phenotypes in a genetically engineered mouse model.


Sujet(s)
Déficience intellectuelle , Microcéphalie , Animaux , Calcineurine , Épines dendritiques , Malformations oculaires , Faciès , Déficience intellectuelle/génétique , Anomalies morphologiques congénitales des membres , Souris , Souris knockout , Microcéphalie/génétique , Mutation/génétique , Synapses , Ubiquitin-protein ligases/génétique
2.
J Neurochem ; 154(6): 647-661, 2020 09.
Article de Anglais | MEDLINE | ID: mdl-32233089

RÉSUMÉ

SUMOylation is a dynamic post-translational protein modification that primarily takes place in cell nuclei, where it plays a key role in multiple DNA-related processes. In neurons, the SUMOylation-dependent control of a subset of neuronal transcription factors is known to regulate various aspects of nerve cell differentiation, development, and function. In an unbiased screen for endogenous SUMOylation targets in the developing mouse brain, based on a His6 -HA-SUMO1 knock-in mouse line, we previously identified the transcription factor Zinc finger and BTB domain-containing 20 (Zbtb20) as a new SUMO1-conjugate. We show here that the three key SUMO paralogues SUMO1, SUMO2, and SUMO3 can all be conjugated to Zbtb20 in vitro in HEK293FT cells, and we confirm the SUMOylation of Zbtb20 in vivo in mouse brain. Using primary hippocampal neurons from wild-type and Zbtb20 knock-out (KO) mice as a model system, we then demonstrate that the expression of Zbtb20 is required for proper nerve cell development and neurite growth and branching. Furthermore, we show that the SUMOylation of Zbtb20 is essential for its function in this context, and provide evidence indicating that SUMOylation affects the Zbtb20-dependent transcriptional profile of neurons. Our data highlight the role of SUMOylation in the regulation of neuronal transcription factors that determine nerve cell development, and they demonstrate that key functions of the transcription factor Zbtb20 in neuronal development and neurite growth are under obligatory SUMOylation control.


Sujet(s)
Système nerveux/croissance et développement , Sumoylation/physiologie , Facteurs de transcription/génétique , Facteurs de transcription/physiologie , Animaux , Survie cellulaire , Analyse de profil d'expression de gènes , Techniques de knock-in de gènes , Cellules HEK293 , Hippocampe/métabolisme , Humains , Souris , Souris de lignée C57BL , Souris knockout , Neurites/physiologie , Neurones/métabolisme , Culture de cellules primaires , ARN/biosynthèse , ARN/génétique
3.
Neuron ; 100(5): 1097-1115.e15, 2018 12 05.
Article de Anglais | MEDLINE | ID: mdl-30392800

RÉSUMÉ

The establishment of axon-dendrite polarity is fundamental for radial migration of neurons during cortex development of mammals. We demonstrate that the E3 ubiquitin ligases WW-Containing Proteins 1 and 2 (Wwp1 and Wwp2) are indispensable for proper polarization of developing neurons. We show that knockout of Wwp1 and Wwp2 results in defects in axon-dendrite polarity in pyramidal neurons, and their aberrant laminar cortical distribution. Knockout of miR-140, encoded in Wwp2 intron, engenders phenotypic changes analogous to those upon Wwp1 and Wwp2 deletion. Intriguingly, transcription of the Wwp1 and Wwp2/miR-140 loci in neurons is induced by the transcription factor Sox9. Finally, we provide evidence that miR-140 supervises the establishment of axon-dendrite polarity through repression of Fyn kinase mRNA. Our data delineate a novel regulatory pathway that involves Sox9-[Wwp1/Wwp2/miR-140]-Fyn required for axon specification, acquisition of pyramidal morphology, and proper laminar distribution of cortical neurons.


Sujet(s)
Polarité de la cellule , Cortex cérébral/croissance et développement , microARN/physiologie , Neurones/physiologie , Facteur de transcription SOX-9/physiologie , Ubiquitin-protein ligases/physiologie , Animaux , Axones/physiologie , Cortex cérébral/cytologie , Dendrites/physiologie , Femelle , Régulation de l'expression des gènes au cours du développement , Mâle , Souris knockout , microARN/génétique , Neurones/cytologie , Facteur de transcription SOX-9/génétique , Ubiquitin-protein ligases/génétique
4.
Elife ; 62017 02 23.
Article de Anglais | MEDLINE | ID: mdl-28231043

RÉSUMÉ

Beyond its role in parturition and lactation, oxytocin influences higher brain processes that control social behavior of mammals, and perturbed oxytocin signaling has been linked to the pathogenesis of several psychiatric disorders. However, it is still largely unknown how oxytocin exactly regulates neuronal function. We show that early, transient oxytocin exposure in vitro inhibits the development of hippocampal glutamatergic neurons, leading to reduced dendrite complexity, synapse density, and excitatory transmission, while sparing GABAergic neurons. Conversely, genetic elimination of oxytocin receptors increases the expression of protein components of excitatory synapses and excitatory synaptic transmission in vitro. In vivo, oxytocin-receptor-deficient hippocampal pyramidal neurons develop more complex dendrites, which leads to increased spine number and reduced γ-oscillations. These results indicate that oxytocin controls the development of hippocampal excitatory neurons and contributes to the maintenance of a physiological excitation/inhibition balance, whose disruption can cause neurobehavioral disturbances.


Sujet(s)
Différenciation cellulaire , Hippocampe/physiologie , Neurones/effets des médicaments et des substances chimiques , Neurones/physiologie , Ocytocine/métabolisme , Transduction du signal , Animaux , Cellules cultivées , Souris knockout
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...