Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Environ Geochem Health ; 11(3-4): 171-85, 1989 Dec.
Article de Anglais | MEDLINE | ID: mdl-24202428

RÉSUMÉ

Concentrations of dissolved arsenic in ground-water in alluvial basins of Arizona commonly exceed 50 µg L(-1) and reach values as large as 1,300 µg L(-1). Arsenic speciation analyses show that arsenic occurs in the fully oxidized state of plus 5 (As+5), most likely in the form of HAsO4(∼2), under existing oxidizing and pH conditions. Arsenic in source areas presumably is oxidized to soluble As before transport into the basin or, if after transport, before burial. Probable sources of arsenic are the sulphide and arsenide deposits in the mineralized areas of the mountains surrounding the basins. Arsenic content of alluvial material ranged from 2 to 88 ppm. Occurrence and removal of arsenic in ground-water are related to the pH and the redox condition of the ground-water, the oxidation state of arsenic, and sorption or exchange. Within basins, dissolved arsenic correlates (P<0.01) with dissolved molybdenum, selenium, vanadium, and fluoride and with pH, suggesting sorption of negative ions. The sorption hypothesis is further supported by enrichment of teachable arsenic in the basin-fill sediments by about tenfold relative to the crustal abundance and by as much as a thousandfold relative to concentrations found in ground-water. Silicate hydrolysis reactions, as defined within the alluvial basins, under closed conditions cause increases in pH basinward and would promote desorption. Within the region, large concentrations of arsenic are commonly associated with the central parts of basins whose chemistries evolve under closed conditions. Arsenic does not correlate with dissolved iron (r = 0.09) but may be partly controlled by iron in the solid phase. High solid-phase arsenic contents were found in red clay beds. Large concentrations of arsenic also were found in water associated with red clay beds. Basins that contain the larger concentrations are bounded primarily by basalt and andesite, suggesting that the iron content as well as the arsenic content of the basin fill may play a role in the occurrence of arsenic in ground-water. Under oxidizing conditions in Arizona, arsenic in ground-water appears to be controlled in part by sorption or desorption of HAsO4(∼2) on active ferric oxyhydroxide surfaces.

2.
Science ; 216(4551): 1227-30, 1982 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-17830584

RÉSUMÉ

Contrary to the prevailing notion that oxygen-depleting reactions in the soil zone and in the aquifer rapidly reduce the dissolved oxygen content of recharge water to detection limits, 2 to 8 milligrams per liter of dissolved oxygen is present in water from a variety of deep (100 to 1000 meters) aquifers in Nevada, Arizona, and the hot springs of the folded Appalachians and Arkansas. Most of the waters sampled are several thousand to more than 10,000 years old, and some are 80 kilometers from their point of recharge.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...