Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Am Mosq Control Assoc ; 40(2): 109-111, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38811012

RÉSUMÉ

Updating the mosquito fauna occurring in a specific area is crucial, given that certain species serve as vectors capable of transmitting zoonotic arboviruses. This scientific note presents the first records of mosquitoes of the tribe Orthopodomyiini in the Yucatan Peninsula. Immature mosquitoes were collected on 2 occasions inside a large tree hole in Felipe Carrillo Puerto, Quintana Roo, Mexico. Thirteen adult specimens, reared from the immatures, were obtained and identified as Orthopodomyia kummi based on external characteristics of females and males. This species has been recorded in Panama, Costa Rica, El Salvador, Guatemala, Mexico, and marginally in the United States, but its presence in the Yucatan Peninsula had gone unnoticed until now. The knowledge about mosquitoes of the genus Orthopodomyia is limited, and their epidemiological importance remains uncertain. Therefore, further studies could provide insights into the ecological and infection dynamics associated with this species.


Sujet(s)
Répartition des animaux , Culicidae , Animaux , Mexique , Femelle , Mâle , Larve/croissance et développement
2.
Microb Genom ; 9(12)2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-38112714

RÉSUMÉ

In Mexico, the BA.4 and BA.5 Omicron variants dominated the fifth epidemic wave (summer 2022), superseding BA.2, which had circulated during the inter-wave period. The present study uses genome sequencing and statistical and phylogenetic analyses to examine these variants' abundance, distribution, and genetic diversity in Mexico from April to August 2022. Over 35 % of the sequenced genomes in this period corresponded to the BA.2 variant, 8 % to the BA.4 and 56 % to the BA.5 variant. Multiple subvariants were identified, but the most abundant, BA.2.9, BA.2.12.1, BA.5.1, BA.5.2, BA.5.2.1 and BA.4.1, circulated across the entire country, not forming geographical clusters. Contrastingly, other subvariants exhibited a geographically restricted distribution, most notably in the Southeast region, which showed a distinct subvariant dynamic. This study supports previous results showing that this region may be a significant entry point and contributed to introducing and evolving novel variants in Mexico. Furthermore, a differential distribution was observed for certain subvariants among specific States through time, which may have contributed to the overall increased diversity observed during this wave compared to the previous ones. This study highlights the importance of sustaining genomic surveillance to identify novel variants that may impact public health.


Sujet(s)
COVID-19 , Humains , Mexique/épidémiologie , COVID-19/épidémiologie , Phylogenèse , SARS-CoV-2/génétique
3.
Infection ; 51(5): 1549-1555, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37058241

RÉSUMÉ

PURPOSE: The swift expansion of the BW.1 SARS-CoV-2 variant coincided with a rapid increase of COVID-19 cases occurring in Southeast Mexico in October, 2022, which marked the start of Mexico's sixth epidemiological wave. In Yucatan, up to 92% (58 of 73) of weekly sequenced genomes between epidemiological week 42 and 47 were identified as either BW.1 or its descendant, BW.1.1 in the region, during the last trimester of 2022. In the current study, a comprehensive genomic comparison was carried out to characterize the evolutionary history of the BW lineage, identifying its origins and its most important mutations. METHODS: An alignment of all the genomes of the BW lineage and its parental BA.5.6.2 variant was carried out to identify their mutations. A phylogenetic and ancestral sequence reconstruction analysis with geographical inference, as well as a longitudinal analysis of point mutations, were performed to trace back their origin and contrast them with key RBD mutations in variant BQ.1, one of the fastest-growing lineages to date. RESULTS: Our ancestral reconstruction analysis portrayed Mexico as the most probable origin of the BW.1 and BW.1.1 variants. Two synonymous substitutions, T7666C and C14599T, support their Mexican origin, whereas other two mutations are specific to BW.1: S:N460K and ORF1a:V627I. Two additional substitutions and a deletion are found in its descending subvariant, BW.1.1. Mutations found in the receptor binding domain, S:K444T, S:L452R, S:N460K, and S:F486V in BW.1 have been reported to be relevant for immune escape and are also key mutations in the BQ.1 lineage. CONCLUSIONS: BW.1 appears to have arisen in the Yucatan Peninsula in Southeast Mexico sometime around July 2022 during the fifth COVID-19 wave. Its rapid growth may be in part explained by the relevant escape mutations also found in BQ.1.


Sujet(s)
COVID-19 , SARS-CoV-2 , Humains , SARS-CoV-2/génétique , Mexique/épidémiologie , COVID-19/épidémiologie , Phylogenèse , Mutation
4.
Viruses ; 15(1)2023 01 15.
Article de Anglais | MEDLINE | ID: mdl-36680283

RÉSUMÉ

PURPOSE: The Omicron subvariant BA.1 of SARS-CoV-2 was first detected in November 2021 and quickly spread worldwide, displacing the Delta variant. In this work, a characterization of the spread of this variant in Mexico is presented. METHODS: The time to fixation of BA.1, the diversity of Delta sublineages, the population density, and the level of virus circulation during the inter-wave interval were determined to analyze differences in BA.1 spread. RESULTS: BA.1 began spreading during the first week of December 2021 and became dominant in the next three weeks, causing the fourth COVID-19 epidemiological surge in Mexico. Unlike previous variants, BA.1 did not exhibit a geographically distinct circulation pattern. However, a regional difference in the speed of the replacement of the Delta variant was observed. CONCLUSIONS: Viral diversity and the relative abundance of the virus in a particular area around the time of the introduction of a new lineage seem to have influenced the spread dynamics, in addition to population density. Nonetheless, if there is a significant difference in the fitness of the variants, or if the time allowed for the competition is sufficiently long, it seems the fitter virus will eventually become dominant, as observed in the eventual dominance of the BA.1.x variant in Mexico.


Sujet(s)
COVID-19 , Épidémies , Humains , Mexique/épidémiologie , COVID-19/épidémiologie , SARS-CoV-2/génétique
5.
Front Vet Sci ; 9: 1057686, 2022.
Article de Anglais | MEDLINE | ID: mdl-36504864

RÉSUMÉ

Backyard animal husbandry is common in rural communities in developing countries and, given the conditions in which it occurs, it can increase the risk of disease transmission, such as arboviruses. To determine the presence of the Zika virus (ZIKV) and abundance of its arthropod vectors we evaluated the socioeconomic implications involved in its transmission in two highly vulnerable Mayan communities in the state of Yucatan that practice backyard farming. An analytical cross-sectional study was carried out throughout 2016 to understand socioeconomic variables and seasonal patterns in mosquito populations. We selected 20 households from each community. Social exclusion indicators were analyzed, human and domestic animals were sampled, and mosquitoes were collected and identified. Four out of eight indicators of social exclusion were higher than the reported national averages. We captured 5,825 mosquitoes from 16 species being Culex quinquefasciatus and Aedes aegypti the most abundant. The presence of chickens and human overcrowding in dwellings were the most significant factors (P = 0.026) associated with the presence of Ae. aegypti. Septic tanks (odds ratio = 6.64) and chickens (odds ratio = 27.41) in backyards were the main risk factors associated with the presence of immature states of Ae. aegypti in both communities. Molecular analysis to detect ZIKV was performed in blood samples from 416 humans, 1,068 backyard animals and 381 mosquito pools. Eighteen humans and 10 pig pools tested positive for ZIKV. Forty-three mosquito pools tested positive for flavivirus. Ten of the 43 pools of positive mosquitoes were sequenced, corresponding 3/10 to ZIKV and 1/10 to Dengue virus type 2. The findings obtained indicate the continuous circulation of Flavivirus (including ZIKV) in backyard environments in vulnerable communities, highlighting the importance of studying their transmission and maintenance in these systems, due that backyard animal husbandry is a common practice in these vulnerable communities with limited access to health services.

6.
Salud Publica Mex ; 64(5, sept-oct): 478-487, 2022 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-36130361

RÉSUMÉ

OBJECTIVE: Evaluate spatially and temporally simultaneous presence of clusters of dengue and Zika clinical cases and their relationship with expected dengue transmission risk. MATERIALS AND METHODS: A classification of dengue risk transmission was carried out for whole country, and spatial autocorrelation analyses to identify clusters of confirmed clinical cases of dengue and Zika from 2015 to 2018 was conducted using Moran's Index statistics. RESULTS: Clusters of both diseases were identified in dengue-high risk munici-palities at the beginning of the outbreak, but, at the end of the outbreak, Zika clusters occurred in dengue low-risk mu-nicipalities. CONCLUSION: This study identified Zika clusters in low-risk dengue areas suggesting participation of several factors that favor virus introduction and dissemination, such as differences in entomological and control interventions, and the possibility of cross-immunity in the population.


Sujet(s)
Dengue , Infection par le virus Zika , Virus Zika , Dengue/épidémiologie , Dengue/prévention et contrôle , Épidémies de maladies , Humains , Incidence , Mexique/épidémiologie , Infection par le virus Zika/épidémiologie
7.
Infect Genet Evol ; 93: 104916, 2021 09.
Article de Anglais | MEDLINE | ID: mdl-34004361

RÉSUMÉ

French Guiana is a European ultraperipheric region located on the northern Atlantic coast of South America. It constitutes an important forested region for biological conservation in the Neotropics. Although very sparsely populated, with its inhabitants mainly concentrated on the Atlantic coastal strip and along the two main rivers, it is marked by the presence and development of old and new epidemic disease outbreaks, both research and health priorities. In this review paper, we synthetize 15 years of multidisciplinary and integrative research at the interface between wildlife, ecosystem modification, human activities and sociodemographic development, and human health. This study reveals a complex epidemiological landscape marked by important transitional changes, facilitated by increased interconnections between wildlife, land-use change and human occupation and activity, human and trade transportation, demography with substantial immigration, and identified vector and parasite pharmacological resistance. Among other French Guianese characteristics, we demonstrate herein the existence of more complex multi-host disease life cycles than previously described for several disease systems in Central and South America, which clearly indicates that today the greater promiscuity between wildlife and humans due to demographic and economic pressures may offer novel settings for microbes and their hosts to circulate and spread. French Guiana is a microcosm that crystallizes all the current global environmental, demographic and socioeconomic change conditions, which may favor the development of ancient and future infectious diseases.


Sujet(s)
Animaux sauvages , Démographie , Écosystème , Maladies vectorielles , Zoonoses , Animaux , Guyane française/épidémiologie , Activités humaines , Humains , Incidence , Recherche interdisciplinaire , Prévalence , Maladies vectorielles/épidémiologie , Maladies vectorielles/transmission , Zoonoses/épidémiologie , Zoonoses/étiologie , Zoonoses/transmission
8.
Sci Rep ; 7(1): 5967, 2017 07 20.
Article de Anglais | MEDLINE | ID: mdl-28729711

RÉSUMÉ

Understanding the spatio-temporal dynamics of endemic infections is of critical importance for a deeper understanding of pathogen transmission, and for the design of more efficient public health strategies. However, very few studies in this domain have focused on emerging infections, generating a gap of knowledge that hampers epidemiological response planning. Here, we analyze the case of a Chikungunya outbreak that occurred in Martinique in 2014. Using time series estimates from a network of sentinel practitioners covering the entire island, we first analyze the spatio-temporal dynamics and show that the largest city has served as the epicenter of this epidemic. We further show that the epidemic spread from there through two different propagation waves moving northwards and southwards, probably by individuals moving along the road network. We then develop a mathematical model to explore the drivers of the temporal dynamics of this mosquito-borne virus. Finally, we show that human behavior, inferred by a textual analysis of messages published on the social network Twitter, is required to explain the epidemiological dynamics over time. Overall, our results suggest that human behavior has been a key component of the outbreak propagation, and we argue that such results can lead to more efficient public health strategies specifically targeting the propagation process.


Sujet(s)
Comportement , Fièvre chikungunya/épidémiologie , Épidémies de maladies , Humains , Martinique/épidémiologie , Modèles biologiques , Analyse spatio-temporelle
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE