Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
2.
Nature ; 629(8011): 435-442, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38658751

RÉSUMÉ

WRN helicase is a promising target for treatment of cancers with microsatellite instability (MSI) due to its essential role in resolving deleterious non-canonical DNA structures that accumulate in cells with faulty mismatch repair mechanisms1-5. Currently there are no approved drugs directly targeting human DNA or RNA helicases, in part owing to the challenging nature of developing potent and selective compounds to this class of proteins. Here we describe the chemoproteomics-enabled discovery of a clinical-stage, covalent allosteric inhibitor of WRN, VVD-133214. This compound selectively engages a cysteine (C727) located in a region of the helicase domain subject to interdomain movement during DNA unwinding. VVD-133214 binds WRN protein cooperatively with nucleotide and stabilizes compact conformations lacking the dynamic flexibility necessary for proper helicase function, resulting in widespread double-stranded DNA breaks, nuclear swelling and cell death in MSI-high (MSI-H), but not in microsatellite-stable, cells. The compound was well tolerated in mice and led to robust tumour regression in multiple MSI-H colorectal cancer cell lines and patient-derived xenograft models. Our work shows an allosteric approach for inhibition of WRN function that circumvents competition from an endogenous ATP cofactor in cancer cells, and designates VVD-133214 as a promising drug candidate for patients with MSI-H cancers.


Sujet(s)
Régulation allostérique , Découverte de médicament , Antienzymes , Protéomique , Werner syndrome helicase , Animaux , Femelle , Humains , Mâle , Souris , Régulation allostérique/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Tumeurs colorectales/traitement médicamenteux , Tumeurs colorectales/enzymologie , Tumeurs colorectales/anatomopathologie , Cystéine/effets des médicaments et des substances chimiques , Cystéine/métabolisme , Cassures double-brin de l'ADN/effets des médicaments et des substances chimiques , Découverte de médicament/méthodes , Antienzymes/pharmacologie , Antienzymes/composition chimique , Instabilité des microsatellites , Modèles moléculaires , Werner syndrome helicase/antagonistes et inhibiteurs , Werner syndrome helicase/composition chimique , Werner syndrome helicase/métabolisme , Tests d'activité antitumorale sur modèle de xénogreffe , Mort cellulaire/effets des médicaments et des substances chimiques , Adénosine triphosphate/métabolisme
4.
Nat Chem Biol ; 18(12): 1388-1398, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36097295

RÉSUMÉ

The Janus tyrosine kinase (JAK) family of non-receptor tyrosine kinases includes four isoforms (JAK1, JAK2, JAK3, and TYK2) and is responsible for signal transduction downstream of diverse cytokine receptors. JAK inhibitors have emerged as important therapies for immun(onc)ological disorders, but their use is limited by undesirable side effects presumed to arise from poor isoform selectivity, a common challenge for inhibitors targeting the ATP-binding pocket of kinases. Here we describe the chemical proteomic discovery of a druggable allosteric cysteine present in the non-catalytic pseudokinase domain of JAK1 (C817) and TYK2 (C838), but absent from JAK2 or JAK3. Electrophilic compounds selectively engaging this site block JAK1-dependent trans-phosphorylation and cytokine signaling, while appearing to act largely as 'silent' ligands for TYK2. Importantly, the allosteric JAK1 inhibitors do not impair JAK2-dependent cytokine signaling and are inactive in cells expressing a C817A JAK1 mutant. Our findings thus reveal an allosteric approach for inhibiting JAK1 with unprecedented isoform selectivity.


Sujet(s)
Cystéine , Protéomique , Transduction du signal , Cytokines , Isoformes de protéines
5.
J Biol Chem ; 298(1): 101477, 2022 01.
Article de Anglais | MEDLINE | ID: mdl-34896393

RÉSUMÉ

Disturbance of the dynamic balance between tyrosine phosphorylation and dephosphorylation of signaling molecules, controlled by protein tyrosine kinases and protein tyrosine phosphatases (PTPs), is known to lead to the development of cancer. While most approved targeted cancer therapies are tyrosine kinase inhibitors, PTPs have long been stigmatized as undruggable and have only recently gained renewed attention in drug discovery. One PTP target is the Src-homology 2 domain-containing phosphatase 2 (SHP2). SHP2 is implicated in tumor initiation, progression, metastasis, and treatment resistance, primarily because of its role as a signaling nexus of the extracellular signal-regulated kinase pathway, acting upstream of the small GTPase Ras. Efforts to develop small molecules that target SHP2 are ongoing, and several SHP2 allosteric inhibitors are currently in clinical trials for the treatment of solid tumors. However, while the reported allosteric inhibitors are highly effective against cells expressing WT SHP2, none have significant activity against the most frequent oncogenic SHP2 variants that drive leukemogenesis in several juvenile and acute leukemias. Here, we report the discovery of novel furanylbenzamide molecules as inhibitors of both WT and oncogenic SHP2. Importantly, these inhibitors readily cross cell membranes, bind and inhibit SHP2 under physiological conditions, and effectively decrease the growth of cancer cells, including triple-negative breast cancer cells, acute myeloid leukemia cells expressing either WT or oncogenic SHP2, and patient-derived acute myeloid leukemia cells. These novel compounds are effective chemical probes of active SHP2 and may serve as starting points for therapeutics targeting WT or mutant SHP2 in cancer.


Sujet(s)
Benzamides , Antienzymes , Leucémie aigüe myéloïde , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Benzamides/pharmacologie , Carcinogenèse , Antienzymes/composition chimique , Antienzymes/pharmacologie , Humains , Leucémie aigüe myéloïde/traitement médicamenteux , Leucémie aigüe myéloïde/enzymologie , Oncogènes , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonistes et inhibiteurs , Protein Tyrosine Phosphatase, Non-Receptor Type 11/métabolisme
6.
J Med Chem ; 64(9): 5645-5653, 2021 05 13.
Article de Anglais | MEDLINE | ID: mdl-33914534

RÉSUMÉ

Obesity-associated insulin resistance plays a central role in the pathogenesis of type 2 diabetes. A promising approach to decrease insulin resistance in obesity is to inhibit the protein tyrosine phosphatases that negatively regulate insulin receptor signaling. The low-molecular-weight protein tyrosine phosphatase (LMPTP) acts as a critical promoter of insulin resistance in obesity by inhibiting phosphorylation of the liver insulin receptor activation motif. Here, we report development of a novel purine-based chemical series of LMPTP inhibitors. These compounds inhibit LMPTP with an uncompetitive mechanism and are highly selective for LMPTP over other protein tyrosine phosphatases. We also report the generation of a highly orally bioavailable purine-based analogue that reverses obesity-induced diabetes in mice.


Sujet(s)
Antienzymes/composition chimique , Protein Tyrosine Phosphatases/antagonistes et inhibiteurs , Purines/composition chimique , Administration par voie orale , Animaux , Sites de fixation , Cristallographie aux rayons X , Diabète de type 2/traitement médicamenteux , Diabète de type 2/étiologie , Modèles animaux de maladie humaine , Évaluation préclinique de médicament , Antienzymes/métabolisme , Antienzymes/pharmacologie , Antienzymes/usage thérapeutique , Période , Humains , Insulinorésistance , Cinétique , Simulation de dynamique moléculaire , Obésité/complications , Obésité/anatomopathologie , Phosphorylation/effets des médicaments et des substances chimiques , Protein Tyrosine Phosphatases/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Purines/métabolisme , Purines/pharmacologie , Purines/usage thérapeutique , Transduction du signal/effets des médicaments et des substances chimiques , Relation structure-activité
7.
J Biol Chem ; 295(9): 2601-2613, 2020 02 28.
Article de Anglais | MEDLINE | ID: mdl-31953320

RÉSUMÉ

The nonreceptor protein-tyrosine phosphatase (PTP) SHP2 is encoded by the proto-oncogene PTPN11 and is a ubiquitously expressed key regulator of cell signaling, acting on a number of cellular processes and components, including the Ras/Raf/Erk, PI3K/Akt, and JAK/STAT pathways and immune checkpoint receptors. Aberrant SHP2 activity has been implicated in all phases of tumor initiation, progression, and metastasis. Gain-of-function PTPN11 mutations drive oncogenesis in several leukemias and cause developmental disorders with increased risk of malignancy such as Noonan syndrome. Until recently, small molecule-based targeting of SHP2 was hampered by the failure of orthosteric active-site inhibitors to achieve selectivity and potency within a useful therapeutic window. However, new SHP2 allosteric inhibitors with excellent potency and selectivity have sparked renewed interest in the selective targeting of SHP2 and other PTP family members. Crucially, drug discovery campaigns focusing on SHP2 would greatly benefit from the ability to validate the cellular target engagement of candidate inhibitors. Here, we report a cellular thermal shift assay that reliably detects target engagement of SHP2 inhibitors. Using this assay, based on the DiscoverX InCell Pulse enzyme complementation technology, we characterized the binding of several SHP2 allosteric inhibitors in intact cells. Moreover, we demonstrate the robustness and reliability of a 384-well miniaturized version of the assay for the screening of SHP2 inhibitors targeting either WT SHP2 or its oncogenic E76K variant. Finally, we provide an example of the assay's ability to identify and characterize novel compounds with specific cellular potency for either WT or mutant SHP2.


Sujet(s)
Découverte de médicament/méthodes , Antienzymes/métabolisme , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonistes et inhibiteurs , Animaux , Carcinogenèse/génétique , Lignée cellulaire , Mutation gain de fonction , Humains , Liaison aux protéines , Protein Tyrosine Phosphatase, Non-Receptor Type 11/génétique , Protein Tyrosine Phosphatase, Non-Receptor Type 11/métabolisme , Proto-oncogène Mas
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...