Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Microorganisms ; 12(6)2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38930577

RÉSUMÉ

The Mexican Central Pacific (MCP) region has discontinuous coral ecosystems with different protection and anthropogenic disturbance. Characterizing the bacterial assemblage associated with the sea urchin Toxopneustes roseus and its relationship with environmental variables will contribute to understanding the species' physiology and ecology. We collected sea urchins from coral ecosystems at six sites in the MCP during the summer and winter for two consecutive years. The spatial scale represented the most important variation in the T. roseus bacteriome, particularly because of Isla Isabel National Park (PNII). Likewise, spatial differences correlated with habitat structure variables, mainly the sponge and live coral cover. The PNII exhibited highly diverse bacterial assemblages compared to other sites, characterized by families associated with diseases and environmental stress (Saprospiraceae, Flammeovirgaceae, and Xanthobacteraceae). The remaining five sites presented a constant spatiotemporal pattern, where the predominance of the Campylobacteraceae and Helicobacteraceae families was key to T. roseus' holobiont. However, the dominance of certain bacterial families, such as Enterobacteriaceae, in the second analyzed year suggests that Punto B and Islas e islotes de Bahía Chamela Sanctuary were exposed to sewage contamination. Overall, our results improve the understanding of host-associated bacterial assemblages in specific time and space and their relationship with the environmental condition.

2.
Microorganisms ; 11(12)2023 Dec 10.
Article de Anglais | MEDLINE | ID: mdl-38138095

RÉSUMÉ

Actinobacteria are important sources of antibiotics and have been found repeatedly in coral core microbiomes, suggesting this bacterial group plays important functional roles tied to coral survival. However, to unravel coral-actinobacteria ecological interactions and discover new antibiotics, the complex challenges that arise when isolating symbiotic actinobacteria must be overcome. Moreover, by isolating unknown actinobacteria from corals, novel biotechnological applications may be discovered. In this study, we compared actinobacteria recovery from coral samples between two widely known methods for isolating actinobacteria: dry stamping and heat shock. We found that dry stamping was at least three times better than heat shock. The assembly of isolated strains by dry stamping was unique for each species and consistent across same-species samples, highlighting that dry stamping can be reliably used to characterize coral actinobacteria communities. By analyzing the genomes of the closest related type strains, we were able to identify several functions commonly found among symbiotic organisms, such as transport and quorum sensing. This study provides a detailed methodology for isolating coral actinobacteria for ecological and biotechnological purposes.

3.
Mar Environ Res ; 192: 106230, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37922703

RÉSUMÉ

We explicitly tested for spatial changes in Pocillopora damicornis-associated invertebrates across several spatial scales in the southern Mexican Pacific. Sorting of invertebrates from 40 coral heads along 882 km of the coast yielded 325 taxa, 283% more than any other Pocillopora spp. coral host study to date, but estimators signals that richness might be 17-39% larger than the current number. Permutation, ordination, and regression analysis indicate that the composition and abundance of invertebrates vary in response to the spatial distance among coral heads: high similarity and variation occur among coral heads within localities (<500 m), probably related to faunal homogenization, but progressively modest reduction in similarity and variation as spatial distance increases suggesting a weak role for environmental sorting across southern Mexican Pacific coral reefs. Future studies should explicitly explore spatial, environmental, and historical biogeography processes that regulate and maintain community structure and biodiversity on eastern Pacific reefs.


Sujet(s)
Anthozoa , Animaux , Récifs de corail , Biodiversité , Mexique
4.
Front Plant Sci ; 13: 920881, 2022.
Article de Anglais | MEDLINE | ID: mdl-36003821

RÉSUMÉ

To ensure food security given the current scenario of climate change and the accompanying ecological repercussions, it is essential to search for new technologies and tools for agricultural production. Microorganism-based biostimulants are recognized as sustainable alternatives to traditional agrochemicals to enhance and protect agricultural production. Marine actinobacteria are a well-known source of novel compounds for biotechnological uses. In addition, former studies have suggested that coral symbiont actinobacteria may support co-symbiotic photosynthetic growth and tolerance and increase the probability of corals surviving abiotic stress. We have previously shown that this activity may also hold in terrestrial plants, at least for the actinobacteria Salinispora arenicola during induced heterologous symbiosis with a wild Solanaceae plant Nicotiana attenuata under in vitro conditions. Here, we further explore the heterologous symbiotic association, germination, growth promotion, and stress relieving activity of S. arenicola in tomato plants under agricultural conditions and dig into the possible associated mechanisms. Tomato plants were grown under normal and saline conditions, and germination, bacteria-root system interactions, plant growth, photosynthetic performance, and the expression of salt stress response genes were analyzed. We found an endophytic interaction between S. arenicola and tomato plants, which promotes germination and shoot and root growth under saline or non-saline conditions. Accordingly, photosynthetic and respective photoprotective performance was enhanced in line with the induced increase in photosynthetic pigments. This was further supported by the overexpression of thermal energy dissipation, which fine-tunes energy use efficiency and may prevent the formation of reactive oxygen species in the chloroplast. Furthermore, gene expression analyses suggested that a selective transport channel gene, SlHKT1,2, induced by S. arenicola may assist in relieving salt stress in tomato plants. The fine regulation of photosynthetic and photoprotective responses, as well as the inhibition of the formation of ROS molecules, seems to be related to the induced down-regulation of other salt stress response genes, such as SlDR1A-related genes or SlAOX1b. Our results demonstrate that the marine microbial symbiont S. arenicola establishes heterologous symbiosis in crop plants, promotes growth, and confers saline stress tolerance. Thus, these results open opportunities to further explore the vast array of marine microbes to enhance crop tolerance and food production under the current climate change scenario.

5.
Front Plant Sci ; 11: 648, 2020.
Article de Anglais | MEDLINE | ID: mdl-32523601

RÉSUMÉ

From their chemical nature to their ecological interactions, coral reef ecosystems have a lot in common with highly productive terrestrial ecosystems. While plants are responsible for primary production in the terrestrial sphere, the photosynthetic endosymbionts of corals are the key producers in reef communities. As in plants, coral microbiota have been suggested to stimulate the growth and physiological performance of the photosynthetic endosymbionts that provide energy sources to the coral. Among them, actinobacteria are some of the most probable candidates. To explore the potential of coral actinobacteria as plant biostimulants, we have analyzed the activity of Salinispora strains isolated from the corals Porites lobata and Porites panamensis, which were identified as Salinispora arenicola by 16S rRNA sequencing. We evaluated the effects of this microorganism on the germination, plant growth, and photosynthetic response of wild tobacco (Nicotiana attenuata) under a saline regime. We identified protective activity of this actinobacteria on seed germination and photosynthetic performance under natural light conditions. Further insights into the possible mechanism showed an endophytic-like symbiosis between N. attenuata roots and S. arenicola and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity by S. arenicola. We discuss these findings in the context of relevant ecological and physiological responses and biotechnological potential. Overall, our results will contribute to the development of novel biotechnologies to cope with plant growth under saline stress. Our study highlights the importance of understanding marine ecological interactions for the development of novel, strategic, and sustainable agricultural solutions.

6.
FEMS Microbiol Ecol ; 92(12)2016 12.
Article de Anglais | MEDLINE | ID: mdl-27633927

RÉSUMÉ

Bacterial assemblages associated with the hermatypic corals Pocillopora damicornis and P. verrucosa, the surrounding seawater and the sediment at six coral reef sites in the north section of the Tropical Eastern Pacific were assessed using MiSeq Illumina sequencing of the V4 region of the 16S rDNA. The bacterial microbiota in both coral species, seawater and sediment were stable to seasonal variations. Bacterial assemblages between the same substrates were not significantly different from each other in the six sites sampled. Interestingly, the bacterial composition between substrates within the same site was significantly different, or not, depending on the conservation status of the site. Moreover, we found species-specific bacterial OTUs in both coral species. Analyzing the relationship between bacterial composition and environmental variables revealed a positive correlation between bacterial assemblages and dissolved oxygen, ammonium and silicate.


Sujet(s)
Anthozoa/microbiologie , Bactéries/classification , Récifs de corail , Sédiments géologiques/microbiologie , Microbiote/génétique , Eau de mer/microbiologie , Composés d'ammonium/métabolisme , Animaux , Bactéries/génétique , Bactéries/isolement et purification , Séquence nucléotidique , ADN bactérien/génétique , Mexique , Oxygène/métabolisme , Océan Pacifique , Phylogenèse , ARN ribosomique 16S/génétique , Analyse de séquence d'ADN , Silicates/métabolisme , Spécificité d'espèce
7.
Zookeys ; (406): 101-45, 2014.
Article de Anglais | MEDLINE | ID: mdl-24843284

RÉSUMÉ

There are numerous and important coral reefs in the Mexican Pacific, but scarce studies of brittle stars conducted in these ecosystems. In this regard, this work provides the first annotated checklist of brittle stars associated with coral communities and reefs in the Mexican Pacific and an illustrated key to identify the species. We also provide taxonomic descriptions, spatial and bathymetric distributions and some important remarks of the species. We report a total of 14 species of brittle stars belonging to nine genera and seven families. Ophiocnida hispida in Jalisco, Ophiophragmus papillatus in Guerrero, and Ophiothrix (Ophiothrix) spiculata and Ophiactis simplex in Colima are new distribution records. The record of O. papillatus is remarkable because the species has not been reported since its description in 1940. The brittle stars collected in this study, represent 22.2% of the total species previously reported from the Mexican Pacific. Presently, anthropogenic activities on the coral reefs of the Mexican Pacific have increased, thus the biodiversity of brittle stars in these ecosystems may be threatened.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE