Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Circ Res ; 84(3): 298-305, 1999 Feb 19.
Article de Anglais | MEDLINE | ID: mdl-10024303

RÉSUMÉ

Embryological data suggest that endothelial cells (ECs) direct the recruitment and differentiation of mural cell precursors. We have developed in vitro coculture systems to model some of these events and have shown that ECs direct the migration of undifferentiated mesenchymal cells (10T1/2 cells) and induce their differentiation toward a smooth muscle cell/pericyte lineage. The present study was undertaken to investigate cell proliferation in these cocultures. ECs and 10T1/2 cells were cocultured in an underagarose assay in the absence of contact. There was a 2-fold increase in bromodeoxyuridine labeling of 10T1/2 cells in response to ECs, which was completely inhibited by the inclusion of neutralizing antiserum against platelet-derived growth factor (PDGF)-B. Antisera against PDGF-A, basic fibroblast growth factor, or transforming growth factor (TGF)-beta had no effect on EC-stimulated 10T1/2 cell proliferation. EC proliferation was not influenced by coculture with 10T1/2 cells in the absence of contact. The cells were then cocultured so that contact was permitted. Double labeling and fluorescence-activated cell sorter analysis revealed that ECs and 10T1/2 cells were growth-inhibited by 43% and 47%, respectively. Conditioned media from contacting EC-10T1/2 cell cocultures inhibited the growth of both cell types by 61% and 48%, respectively. Although we have previously shown a role for TGF-beta in coculture-induced mural cell differentiation, growth inhibition resulting from contacting cocultures or conditioned media was not suppressed by the presence of neutralizing antiserum against TGF-beta. Furthermore, the decreased proliferation of 10T1/2 cells in the direct cocultures could not be attributed to downregulation of the PDGF-B in ECs or the PDGF receptor-beta in the 10T1/2 cells. Our data suggest that modulation of proliferation occurs during EC recruitment of mesenchymal cells and that heterotypic cell-cell contact and soluble factors play a role in growth control during vessel assembly.


Sujet(s)
Communication cellulaire , Endothélium vasculaire/cytologie , Muscles lisses vasculaires/cytologie , Facteur de croissance dérivé des plaquettes/physiologie , Cellules souches/physiologie , Animaux , Bécaplermine , Bovins , Division cellulaire , Cellules cultivées , Techniques de coculture , Endothélium vasculaire/physiologie , Protéines proto-oncogènes c-sis , Facteur de croissance transformant bêta/physiologie
2.
J Cell Biol ; 141(3): 805-14, 1998 May 04.
Article de Anglais | MEDLINE | ID: mdl-9566978

RÉSUMÉ

We aimed to determine if and how endothelial cells (EC) recruit precursors of smooth muscle cells and pericytes and induce their differentiation during vessel formation. Multipotent embryonic 10T1/2 cells were used as presumptive mural cell precursors. In an under-agarose coculture, EC induced migration of 10T1/2 cells via platelet-derived growth factor BB. 10T1/2 cells in coculture with EC changed from polygonal to spindle-shaped, reminiscent of smooth muscle cells in culture. Immunohistochemical and Western blot analyses were used to examine the expression of smooth muscle (SM)-specific markers in 10T1/2 cells cultured in the absence and presence of EC. SM-myosin, SM22alpha, and calponin proteins were undetectable in 10T1/2 cells cultured alone; however, expression of all three SM-specific proteins was significantly induced in 10T1/2 cells cocultured with EC. Treatment of 10T1/2 cells with TGF-beta induced phenotypic changes and changes in SM markers similar to those seen in the cocultures. Neutralization of TGF-beta in the cocultures blocked expression of the SM markers and the shape change. To assess the ability of 10T1/2 cells to contribute to the developing vessel wall in vivo, prelabeled 10T1/2 cells were grown in a collagen matrix and implanted subcutaneously into mice. The fluorescently marked cells became incorporated into the medial layer of developing vessels where they expressed SM markers. These in vitro and in vivo observations shed light on the cell-cell interactions that occur during vessel development, as well as in pathologies in which developmental processes are recapitulated.


Sujet(s)
Communication cellulaire/physiologie , Endothélium vasculaire/métabolisme , Muscles lisses vasculaires/cytologie , Facteur de croissance dérivé des plaquettes/métabolisme , Facteur de croissance transformant bêta/métabolisme , Animaux , Bovins , Différenciation cellulaire , Mouvement cellulaire , Techniques de coculture , Endothélium vasculaire/cytologie , Mésoderme , Souris , Souris de lignée C57BL , Phénotype
4.
Am Heart J ; 132(5): 1015-9, 1996 Nov.
Article de Anglais | MEDLINE | ID: mdl-8892777

RÉSUMÉ

Basic fibroblast growth factor (bFGF), a prototypic member of a family of heparin-binding growth factors, is angiogenic both in vitro and in vivo. Increased levels and activity of bFGF have been documented in a variety of diseases, including tumors. We sought to determine whether bFGF might be similarly elevated in patients with clinical evidence of limb ischemia. Serum was obtained at the time of percutaneous revascularization from patients with symptomatic peripheral vascular disease (46 procedures were performed on 40 patients). An enzyme-linked immunoassay specific for bFGF was used (limit of detection, 1 pg/ml; range in normal subjects, 0 to 5 pg/ml). Among the 40 patients (28 men, 12 women, mean age 70 years) studied, elevated circulating bFGF (> or = 10 pg/ml) was detected in 36 samples (78%); levels ranged from 10 to 310 pg/ml (mean +/- SEM = 62 +/- 12). In 16 (89%) of 18 patients with both rest pain and nonhealing ischemic ulcers, serum bFGF levels were elevated up to 30 times normal values. In conclusion, circulating levels of bFGF are elevated in patients with vascular insufficiency and may reflect a physiologic response to limb ischemia.


Sujet(s)
Facteur de croissance fibroblastique de type 2/sang , Ischémie/sang , Jambe/vascularisation , Insuffisance veineuse/sang , Sujet âgé , Sujet âgé de 80 ans ou plus , Test ELISA , Femelle , Humains , Mâle , Adulte d'âge moyen , Régulation positive/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE