Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Dermatol Clin ; 40(4): 449-459, 2022 Oct.
Article de Anglais | MEDLINE | ID: mdl-36243432

RÉSUMÉ

The identification of the genetic cause of vascular malformations is improving understanding of pathogenesis of these lesions and also informing potential opportunities for treatment. Somatic activating mutations affecting RAS/MAPK and PIK3/AKT/mTor pathways are implicated in all types of vascular malformations. Pathogenic variants associated with vascular lesions may be germline or somatic. Next-generation sequencing technologies allow identification of lower level mosaic mutations than was achievable with standard Sanger sequencing. Best practice strategies to identify underlying genetic mutations in vascular malformations are influenced by the tissues involved and the type of vascular lesion.


Sujet(s)
Protéines proto-oncogènes c-akt , Anomalies vasculaires , Humains , Mutation , Protéines proto-oncogènes c-akt/génétique , Transduction du signal/génétique , Sérine-thréonine kinases TOR/génétique , Anomalies vasculaires/génétique
2.
PLoS One ; 15(4): e0231194, 2020.
Article de Anglais | MEDLINE | ID: mdl-32271817

RÉSUMÉ

Various injuries to the neural tissues can cause irreversible damage to multiple functions of the nervous system ranging from motor control to cognitive function. The limited treatment options available for patients have led to extensive interest in studying the mechanisms of neuronal regeneration and recovery from injury. Since many neurons are terminally differentiated, by increasing cell survival following injury it may be possible to minimize the impact of these injuries and provide translational potential for treatment of neuronal diseases. While several cell types are known to survive injury through plasma membrane repair mechanisms, there has been little investigation of membrane repair in neurons and even fewer efforts to target membrane repair as a therapy in neurons. Studies from our laboratory group and others demonstrated that mitsugumin 53 (MG53), a muscle-enriched tripartite motif (TRIM) family protein also known as TRIM72, is an essential component of the cell membrane repair machinery in skeletal muscle. Interestingly, recombinant human MG53 (rhMG53) can be applied exogenously to increase membrane repair capacity both in vitro and in vivo. Increasing the membrane repair capacity of neurons could potentially minimize the death of these cells and affect the progression of various neuronal diseases. In this study we assess the therapeutic potential of rhMG53 to increase membrane repair in cultured neurons and in an in vivo mouse model of neurotrauma. We found that a robust repair response exists in various neuronal cells and that rhMG53 can increase neuronal membrane repair both in vitro and in vivo. These findings provide direct evidence of conserved membrane repair responses in neurons and that these repair mechanisms can be targeted as a potential therapeutic approach for neuronal injury.


Sujet(s)
Régénération nerveuse , Nerf ischiatique/traumatismes , Nerf ischiatique/physiopathologie , Cicatrisation de plaie , Animaux , Lignée cellulaire , Membrane cellulaire/effets des médicaments et des substances chimiques , Membrane cellulaire/métabolisme , Lésions d'écrasement/anatomopathologie , Lésions d'écrasement/physiopathologie , Modèles animaux de maladie humaine , Humains , Protéines membranaires/métabolisme , Membranes , Souris de lignée C57BL , Régénération nerveuse/effets des médicaments et des substances chimiques , Neurones/effets des médicaments et des substances chimiques , Neurones/métabolisme , Neurones/anatomopathologie , Protéines recombinantes/pharmacologie , Nerf ischiatique/effets des médicaments et des substances chimiques , Nerf ischiatique/anatomopathologie , Protéines à motif tripartite/pharmacologie , Cicatrisation de plaie/effets des médicaments et des substances chimiques
3.
Am J Physiol Cell Physiol ; 318(2): C253-C262, 2020 02 01.
Article de Anglais | MEDLINE | ID: mdl-31747313

RÉSUMÉ

Various previous studies established that the amphiphilic tri-block copolymer known as poloxamer 188 (P188) or Pluronic-F68 can stabilize the plasma membrane following a variety of injuries to multiple mammalian cell types. This characteristic led to proposals for the use of P188 as a therapeutic treatment for various disease states, including muscular dystrophy. Previous studies suggest that P188 increases plasma membrane integrity by resealing plasma membrane disruptions through its affinity for the hydrophobic lipid chains on the lipid bilayer. P188 is one of a large family of copolymers that share the same basic tri-block structure consisting of a middle hydrophobic propylene oxide segment flanked by two hydrophilic ethylene oxide moieties [poly(ethylene oxide)80-poly(propylene oxide)27-poly(ethylene oxide)80]. Despite the similarities of P188 to the other poloxamers in this chemical family, there has been little investigation into the membrane-resealing properties of these other poloxamers. In this study we assessed the resealing properties of poloxamers P181, P124, P182, P234, P108, P407, and P338 on human embryonic kidney 293 (HEK293) cells and isolated muscle from the mdx mouse model of Duchenne muscular dystrophy. Cell membrane injuries from glass bead wounding and multiphoton laser injury show that the majority of poloxamers in our panel improved the plasma membrane resealing of both HEK293 cells and dystrophic muscle fibers. These findings indicate that many tri-block copolymers share characteristics that can increase plasma membrane resealing and that identification of these shared characteristics could help guide design of future therapeutic approaches.


Sujet(s)
Membrane cellulaire/effets des médicaments et des substances chimiques , Muscles/effets des médicaments et des substances chimiques , Poloxamère/pharmacologie , Animaux , Lignée cellulaire , Cellules HEK293 , Humains , Interactions hydrophobes et hydrophiles/effets des médicaments et des substances chimiques , Souris , Souris de lignée mdx , Myopathie de Duchenne/traitement médicamenteux
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE