Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 72
Filtrer
1.
Function (Oxf) ; 1(2): zqaa024, 2020.
Article de Anglais | MEDLINE | ID: mdl-33201937

RÉSUMÉ

The Coronavirus Disease 2019 (COVID-19) pandemic remains a serious public health problem and will continue to be until effective drugs and/or vaccines are available. The rational development of drugs critically depends on our understanding of disease mechanisms, that is, the physiology and pathophysiology underlying the function of the organ targeted by the virus. Since the beginning of the pandemic, tireless efforts around the globe have led to numerous publications on the virus, its receptor, its entry into the cell, its cytopathic effects, and how it triggers innate and native immunity but the role of apical sodium transport mediated by the epithelial sodium channel (ENaC) during the early phases of the infection in the airways has received little attention. We propose a pathophysiological model that defines the possible role of ENaC in this process.


Sujet(s)
COVID-19 , Humains , Sodium/métabolisme , Transport biologique , Transport des ions , Canaux sodium épithéliaux/métabolisme
2.
Rev Med Suisse ; 16(701): 1450-1455, 2020 Aug 05.
Article de Français | MEDLINE | ID: mdl-32833367

RÉSUMÉ

The Covid 19 pandemic remains a serious public health problem until effective drugs and/or vaccines are available. Can we explain why so many people remain asymptomatic but nevertheless highly contagious explaining the speed with which the pandemic has spread around the world? Can we explain why the acute respiratory distress syndrome (ARDS) appears late but can so quickly have a fatal outcome? In the lung, mucociliary clearance (CMC) and alveolar clearance (CA) depend on the transport of sodium through the plasma membrane of epithelial cells. This transport is mediated by a highly selective sodium channel (Epithelial Sodium Channel = ENaC) which could be a key element in the pulmonary pathophysiology of SARS-CoV-2 infection.


La pandémie Covid-19 reste un grave problème de santé publique tant que l'on ne disposera pas de médicaments et/ou d'un vaccin efficaces. Peut-on expliquer pourquoi de si nombreuses personnes restent asymptomatiques mais néanmoins hautement contagieuses expliquant la rapidité avec laquelle la pandémie s'est répandue dans le monde ? Pourquoi le syndrome de détresse respiratoire aigu (SDRA) apparaît-il tardivement mais peut rapidement avoir une issue fatale ? Dans le poumon, la clairance muco-ciliaire (CMC) et la clairance alvéolaire (CA) dépendent du transport de sodium à travers la membrane plasmique des cellules épithéliales. Ce transport est médié par un canal ionique hautement sélectif pour le sodium (Epithelial Sodium Channel = ENaC), qui pourrait être un élément clé de la physiopathologie pulmonaire de l'infection à SARS-CoV-2.


Sujet(s)
Betacoronavirus/pathogénicité , Infections à coronavirus/métabolisme , Modèles biologiques , Pneumopathie virale/métabolisme , Sodium/métabolisme , COVID-19 , Infections à coronavirus/virologie , Humains , Transport des ions , Pandémies , Pneumopathie virale/virologie , SARS-CoV-2
3.
J Am Soc Nephrol ; 29(3): 977-990, 2018 03.
Article de Anglais | MEDLINE | ID: mdl-29371419

RÉSUMÉ

The amiloride-sensitive epithelial sodium channel (ENaC) and the thiazide-sensitive sodium chloride cotransporter (NCC) are key regulators of sodium and potassium and colocalize in the late distal convoluted tubule of the kidney. Loss of the αENaC subunit leads to a perinatal lethal phenotype characterized by sodium loss and hyperkalemia resembling the human syndrome pseudohypoaldosteronism type 1 (PHA-I). In adulthood, inducible nephron-specific deletion of αENaC in mice mimics the lethal phenotype observed in neonates, and as in humans, this phenotype is prevented by a high sodium (HNa+)/low potassium (LK+) rescue diet. Rescue reflects activation of NCC, which is suppressed at baseline by elevated plasma potassium concentration. In this study, we investigated the role of the γENaC subunit in the PHA-I phenotype. Nephron-specific γENaC knockout mice also presented with salt-wasting syndrome and severe hyperkalemia. Unlike mice lacking αENaC or ßΕΝaC, an HNa+/LK+ diet did not normalize plasma potassium (K+) concentration or increase NCC activation. However, when K+ was eliminated from the diet at the time that γENaC was deleted, plasma K+ concentration and NCC activity remained normal, and progressive weight loss was prevented. Loss of the late distal convoluted tubule, as well as overall reduced ßENaC subunit expression, may be responsible for the more severe hyperkalemia. We conclude that plasma K+ concentration becomes the determining and limiting factor in regulating NCC activity, regardless of Na+ balance in γENaC-deficient mice.


Sujet(s)
Canaux sodium épithéliaux/génétique , Hyperkaliémie/génétique , Potassium/sang , Pseudohypoaldostéronisme/sang , Pseudohypoaldostéronisme/génétique , Animaux , Chélateurs/usage thérapeutique , Compléments alimentaires , Hyperkaliémie/sang , Hyperkaliémie/traitement médicamenteux , Souris , Souris knockout , Néphrons , Polystyrènes/usage thérapeutique , Potassium alimentaire/administration et posologie , Sodium alimentaire/administration et posologie , Membre-3 de la famille-12 des transporteurs de solutés/métabolisme
4.
Physiology (Bethesda) ; 32(2): 112-125, 2017 03.
Article de Anglais | MEDLINE | ID: mdl-28202622

RÉSUMÉ

Hypertension affects over 1.2 billion individuals worldwide and has become the most critical and expensive public health problem. Hypertension is a multifactorial disease involving environmental and genetic factors together with risk-conferring behaviors. The cause of the disease is identified in ∼10% of the cases (secondary hypertension), but in 90% of the cases no etiology is found (primary or essential hypertension). For this reason, a better understanding of the mechanisms controlling blood pressure in normal and hypertensive patients is the aim of very active experimental and clinical research. In this article, we review the importance of the renin-angiotensin-aldosterone system (RAAS) for the control of blood pressure, focusing on the evolution of the system and its critical importance for adaptation of vertebrates to a terrestrial and dry environment. The evolution of blood pressure control during the evolution of primates, hominins, and humans is discussed, together with the role of common genetic factors and the possible causes of the current hypertension pandemic in the light of evolutionary medicine.


Sujet(s)
Évolution biologique , Hypertension artérielle/épidémiologie , Pandémies , Système rénine-angiotensine , Animaux , Pression sanguine , Interaction entre gènes et environnement , Humains , Hypertension artérielle/génétique , Hypertension artérielle/physiopathologie , Rein/métabolisme , Rein/physiopathologie , Potassium alimentaire/métabolisme , Sodium alimentaire/métabolisme
5.
Nephron ; 134(1): 5-9, 2016.
Article de Anglais | MEDLINE | ID: mdl-26901864

RÉSUMÉ

Vertebrates control the osmolality of their extra- and intra-cellular compartments despite large variations in salt and water intake. Aldosterone-dependent sodium reabsorption and vasopressin-dependent water transport in the distal nephron and collecting duct play a critical role in the final control of sodium and water balance. Long-term fasting (no eating, no drinking) represents an osmotic challenge for survival. Evolution has found very different solutions to meet this challenge. To illustrate this point, I will discuss osmoregulation of a mammal (elephant seal pup) and of a fish (lungfish) that are able to survive long-term fasting for months or even years. Homer W. Smith taught us how informative comparative anatomy and physiology of the kidney could help physiologists and nephrologists to better understand how the kidney works. In recent years, comparative genomics, transcriptomics and proteomics across the tree of life have led to the emergence of a new discipline, evolutionary medicine. In the near future, physiologists and nephrologists will benefit from this new field of investigation, thanks to its potential for the identification of novel drug targets and therapies.


Sujet(s)
Jeûne , Poissons/physiologie , Osmorégulation , Phoques/physiologie , Animaux , Arginine vasopressine/physiologie , Évolution biologique , Système rénine-angiotensine
6.
J Am Soc Nephrol ; 27(8): 2309-18, 2016 08.
Article de Anglais | MEDLINE | ID: mdl-26701978

RÉSUMÉ

Systemic pseudohypoaldosteronism type 1 (PHA-1) is a severe salt-losing syndrome caused by loss-of-function mutations of the amiloride-sensitive epithelial sodium channel (ENaC) and characterized by neonatal life-threatening hypovolemia and hyperkalemia. The very high plasma aldosterone levels detected under hypovolemic or hyperkalemic challenge can lead to increased or decreased sodium reabsorption, respectively, through the Na(+)/Cl(-) cotransporter (NCC). However, the role of ENaC deficiency remains incompletely defined, because constitutive inactivation of individual ENaC subunits is neonatally lethal in mice. We generated adult inducible nephron-specific αENaC-knockout mice (Scnn1a(Pax8/LC1)) that exhibit hyperkalemia and body weight loss when kept on a regular-salt diet, thus mimicking PHA-1. Compared with control mice fed a regular-salt diet, knockout mice fed a regular-salt diet exhibited downregulated expression and phosphorylation of NCC protein, despite high plasma aldosterone levels. In knockout mice fed a high-sodium and reduced-potassium diet (rescue diet), although plasma aldosterone levels remained significantly increased, NCC expression returned to control levels, and body weight, plasma and urinary electrolyte concentrations, and excretion normalized. Finally, shift to a regular diet after the rescue diet reinstated the symptoms of severe PHA-1 syndrome and significantly reduced NCC phosphorylation. In conclusion, lack of ENaC-mediated sodium transport along the nephron cannot be compensated for by other sodium channels and/or transporters, only by a high-sodium and reduced-potassium diet. We further conclude that hyperkalemia becomes the determining factor in regulating NCC activity, regardless of sodium loss, in the ENaC-mediated salt-losing PHA-1 phenotype.


Sujet(s)
Canaux sodium épithéliaux/génétique , Hyperkaliémie/génétique , Pseudohypoaldostéronisme/génétique , Animaux , Souris , Souris knockout , Néphrons , Indice de gravité de la maladie
7.
Physiol Rev ; 95(1): 297-340, 2015 Jan.
Article de Anglais | MEDLINE | ID: mdl-25540145

RÉSUMÉ

Transcription and translation require a high concentration of potassium across the entire tree of life. The conservation of a high intracellular potassium was an absolute requirement for the evolution of life on Earth. This was achieved by the interplay of P- and V-ATPases that can set up electrochemical gradients across the cell membrane, an energetically costly process requiring the synthesis of ATP by F-ATPases. In animals, the control of an extracellular compartment was achieved by the emergence of multicellular organisms able to produce tight epithelial barriers creating a stable extracellular milieu. Finally, the adaptation to a terrestrian environment was achieved by the evolution of distinct regulatory pathways allowing salt and water conservation. In this review we emphasize the critical and dual role of Na(+)-K(+)-ATPase in the control of the ionic composition of the extracellular fluid and the renin-angiotensin-aldosterone system (RAAS) in salt and water conservation in vertebrates. The action of aldosterone on transepithelial sodium transport by activation of the epithelial sodium channel (ENaC) at the apical membrane and that of Na(+)-K(+)-ATPase at the basolateral membrane may have evolved in lungfish before the emergence of tetrapods. Finally, we discuss the implication of RAAS in the origin of the present pandemia of hypertension and its associated cardiovascular diseases.


Sujet(s)
Aldostérone/métabolisme , Évolution biologique , Canaux sodium épithéliaux/métabolisme , Sodium-Potassium-Exchanging ATPase/métabolisme , Sodium/métabolisme , Animaux , Canaux sodium épithéliaux/composition chimique , Canaux sodium épithéliaux/génétique , Génome humain , Humains , Néphrons/physiologie , Transduction du signal/physiologie , Sodium-Potassium-Exchanging ATPase/composition chimique , Sodium-Potassium-Exchanging ATPase/génétique
9.
Curr Opin Pharmacol ; 15: 33-46, 2014 Apr.
Article de Anglais | MEDLINE | ID: mdl-24721652

RÉSUMÉ

The amiloride-sensitive epithelial sodium channel (ENaC) constitutes the rate-limiting step for sodium reabsorption in epithelial cells that line the distal part of the renal tubule, the distal colon, the duct of several exocrine glands, and the lung. The activity of this channel is regulated by aldosterone and hormones involved in the maintenance of sodium balance, blood volume and blood pressure. In this review, we discuss recent advances in our understanding of ENaC function and regulation relevant to the control of sodium balance and blood pressure. The identification of novel drug targets should help in the development of the next generation of diuretics and of new therapies for the treatment of hypertension.


Sujet(s)
Antihypertenseurs/pharmacologie , Pression sanguine/physiologie , Canaux sodium épithéliaux/physiologie , Animaux , Pression sanguine/effets des médicaments et des substances chimiques , Humains , Thérapie moléculaire ciblée
10.
J Am Soc Nephrol ; 25(7): 1453-64, 2014 Jul.
Article de Anglais | MEDLINE | ID: mdl-24480829

RÉSUMÉ

Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.


Sujet(s)
Aldostérone/métabolisme , Côlon/métabolisme , Canaux sodium épithéliaux/physiologie , Sodium/métabolisme , Animaux , Canaux sodium épithéliaux/déficit , Femelle , Mâle , Souris , Serine endopeptidases/physiologie
11.
FEBS Lett ; 587(13): 1929-41, 2013 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-23684652

RÉSUMÉ

In this review, we discuss genetic evidence supporting Guyton's hypothesis stating that blood pressure control is critically depending on fluid handling by the kidney. The review is focused on the genetic dissection of sodium and potassium transport in the distal nephron and the collecting duct that are the most important sites for the control of sodium and potassium balance by aldosterone and angiotensin II. Thanks to the study of Mendelian forms of hypertension and their corresponding transgenic mouse models, three main classes of diuretic receptors (furosemide, thiazide, amiloride) and the main components of the aldosterone- and angiotensin-dependent signaling pathways were molecularly identified over the past 20 years. This will allow to design rational strategies for the treatment of hypertension and for the development of the next generation of diuretics.


Sujet(s)
Pression sanguine , Hypertension artérielle/génétique , Néphrons/métabolisme , Potassium/métabolisme , Sodium/métabolisme , Animaux , Transport biologique , Humains , Hypertension artérielle/métabolisme , Maladies du rein/génétique , Maladies du rein/métabolisme , Mutation , Néphrons/physiopathologie , Canaux potassiques/génétique , Canaux potassiques/métabolisme , Transduction du signal , Canaux sodiques/génétique , Canaux sodiques/métabolisme , Symporteurs des ions sodium-potassium-chlorure/génétique , Symporteurs des ions sodium-potassium-chlorure/métabolisme
12.
Am J Physiol Renal Physiol ; 304(11): F1390-7, 2013 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-23515718

RÉSUMÉ

Since nitric oxide (NO) participates in the renal regulation of blood pressure, in part, by modulating transport of Na⁺ and Cl⁻ in the kidney, we asked whether NO regulates net Cl⁻ flux (JCl) in the cortical collecting duct (CCD) and determined the transporter(s) that mediate NO-sensitive Cl⁻ absorption. Cl⁻ absorption was measured in CCDs perfused in vitro that were taken from aldosterone-treated mice. Administration of an NO donor (10 µM MAHMA NONOate) reduced JCl and transepithelial voltage (VT) both in the presence or absence of angiotensin II. However, reducing endogenous NO production by inhibiting NO synthase (100 µM N(G)-nitro-L-arginine methyl ester) increased JCl only in the presence of angiotensin II, suggesting that angiotensin II stimulates NO synthase activity. To determine the transport process that mediates NO-sensitive changes in JCl, we examined the effect of NO on JCl following either genetic ablation or chemical inhibition of transporters in the CCD. Since the application of hydrochlorothiazide (100 µM) or bafilomycin (5 nM) to the perfusate or ablation of the gene encoding pendrin did not alter NO-sensitive JCl, NO modulates JCl independent of the Na⁺-dependent Cl⁻/HCO3⁻ exchanger (NDCBE, Slc4a8), the A cell apical plasma membrane H⁺-ATPase and pendrin. In contrast, both total and NO-sensitive JCl and VT were abolished with application of an epithelial Na(+) channel (ENaC) inhibitor (3 µM benzamil) to the perfusate. We conclude that NO reduces Cl⁻ absorption in the CCD through a mechanism that is ENaC-dependent.


Sujet(s)
Chlorures/métabolisme , Canaux sodium épithéliaux/physiologie , Tubules collecteurs rénaux/métabolisme , Monoxyde d'azote/physiologie , Absorption/physiologie , Aldostérone/administration et posologie , Amiloride/analogues et dérivés , Amiloride/pharmacologie , Angiotensine-II/pharmacologie , Animaux , Transporteurs d'anions/déficit , Transporteurs d'anions/physiologie , Antiporteurs des ions chlorure-bicarbonate/physiologie , Canaux sodium épithéliaux/effets des médicaments et des substances chimiques , Canaux sodium épithéliaux/génétique , Femelle , Techniques in vitro , Mâle , Souris , Souris knockout , L-NAME/pharmacologie , Donneur d'oxyde nitrique/administration et posologie , Nitric oxide synthase/antagonistes et inhibiteurs , Sodium/pharmacologie , Transporteurs de sulfate
14.
Am J Physiol Renal Physiol ; 303(1): F45-55, 2012 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-22496413

RÉSUMÉ

In cortical collecting ducts (CCDs) perfused in vitro, inhibiting the epithelial Na(+) channel (ENaC) reduces Cl(-) absorption. Since ENaC does not transport Cl(-), the purpose of this study was to determine how ENaC modulates Cl(-) absorption. Thus, Cl(-) absorption was measured in CCDs perfused in vitro that were taken from mice given aldosterone for 7 days. In wild-type mice, we observed no effect of luminal hydrochlorothiazide on either Cl(-) absorption or transepithelial voltage (V(T)). However, application of an ENaC inhibitor [benzamil (3 µM)] to the luminal fluid or application of a Na(+)-K(+)-ATPase inhibitor to the bath reduced Cl(-) absorption by ∼66-75% and nearly obliterated lumen-negative V(T). In contrast, ENaC inhibition had no effect in CCDs from collecting duct-specific ENaC-null mice (Hoxb7:CRE, Scnn1a(loxlox)). Whereas benzamil-sensitive Cl(-) absorption did not depend on CFTR, application of a Na(+)-K(+)-2Cl(-) cotransport inhibitor (bumetanide) to the bath or ablation of the gene encoding Na(+)-K(+)-2Cl(-) cotransporter 1 (NKCC1) blunted benzamil-sensitive Cl(-) absorption, although the benzamil-sensitive component of V(T) was unaffected. In conclusion, first, in CCDs from aldosterone-treated mice, most Cl(-) absorption is benzamil sensitive, whereas thiazide-sensitive Cl(-) absorption is undetectable. Second, benzamil-sensitive Cl(-) absorption occurs by inhibition of ENaC, possibly due to elimination of lumen-negative V(T). Finally, benzamil-sensitive Cl(-) flux occurs, at least in part, through transcellular transport through a pathway that depends on NKCC1.


Sujet(s)
Chlorures/métabolisme , Bloqueurs de canaux sodiques épithéliaux , Tubules collecteurs rénaux/métabolisme , Symporteurs des ions sodium-potassium-chlorure/métabolisme , Absorption/effets des médicaments et des substances chimiques , Aldostérone/pharmacologie , Amiloride/analogues et dérivés , Amiloride/pharmacologie , Animaux , Transport biologique/effets des médicaments et des substances chimiques , Canaux sodium épithéliaux/génétique , Canaux sodium épithéliaux/métabolisme , Hydrochlorothiazide/pharmacologie , Tubules collecteurs rénaux/effets des médicaments et des substances chimiques , Souris , Souris knockout , Sodium/métabolisme , Inhibiteurs du symport chlorure sodium/pharmacologie , Membre-2 de la famille-12 des transporteurs de solutés
16.
Pflugers Arch ; 462(6): 871-83, 2011 Dec.
Article de Anglais | MEDLINE | ID: mdl-21938401

RÉSUMÉ

Inositol Inpp5k (or Pps, SKIP) is a member of the inositol polyphosphate 5-phosphatases family with a poorly characterized function in vivo. In this study, we explored the function of this inositol 5-phosphatase in mice and cells overexpressing the 42-kDa mouse Inpp5k protein. Inpp5k transgenic mice present defects in water metabolism characterized by a reduced plasma osmolality at baseline, a delayed urinary water excretion following a water load, and an increased acute response to vasopressin. These defects are associated with the expression of the Inpp5k transgene in renal collecting ducts and with alterations in the arginine vasopressin/aquaporin-2 signalling pathway in this tubular segment. Analysis in a mouse collecting duct mCCD cell line revealed that Inpp5k overexpression leads to increased expression of the arginine vasopressin receptor type 2 and increased cAMP response to arginine vasopressin, providing a basis for increased aquaporin-2 expression and plasma membrane localization with increased osmotically induced water transport. Altogether, our results indicate that Inpp5k 5-phosphatase is important for the control of the arginine vasopressin/aquaporin-2 signalling pathway and water transport in kidney collecting ducts.


Sujet(s)
Aquaporine-2/métabolisme , Tubules collecteurs rénaux/métabolisme , Phosphoric monoester hydrolases/métabolisme , Vasopressines/métabolisme , Équilibre hydroélectrolytique/physiologie , Animaux , Cellules cultivées , Femelle , Humains , Tubules collecteurs rénaux/cytologie , Souris , Souris de lignée BALB C , Souris de lignée C57BL , Souris transgéniques , Phosphoric monoester hydrolases/génétique , Transduction du signal/physiologie , Eau/métabolisme
17.
Physiol Genomics ; 43(13): 844-54, 2011 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-21558422

RÉSUMÉ

Despite large changes in salt intake, the mammalian kidney is able to maintain the extracellular sodium concentration and osmolarity within very narrow margins, thereby controlling blood volume and blood pressure. In the aldosterone-sensitive distal nephron (ASDN), aldosterone tightly controls the activities of epithelial sodium channel (ENaC) and Na,K-ATPase, the two limiting factors in establishing transepithelial sodium transport. It has been proposed that the ENaC/degenerin gene family is restricted to Metazoans, whereas the α- and ß-subunits of Na,K-ATPase have homologous genes in prokaryotes. This raises the question of the emergence of osmolarity control. By exploring recent genomic data of diverse organisms, we found that: 1) ENaC/degenerin exists in all of the Metazoans screened, including nonbilaterians and, by extension, was already present in ancestors of Metazoa; 2) ENaC/degenerin is also present in Naegleria gruberi, an eukaryotic microbe, consistent with either a vertical inheritance from the last common ancestor of Eukaryotes or a lateral transfer between Naegleria and Metazoan ancestors; and 3) The Na,K-ATPase ß-subunit is restricted to Holozoa, the taxon that includes animals and their closest single-cell relatives. Since the ß-subunit of Na,K-ATPase plays a key role in targeting the α-subunit to the plasma membrane and has an additional function in the formation of cell junctions, we propose that the emergence of Na,K-ATPase, together with ENaC/degenerin, is linked to the development of multicellularity in the Metazoan kingdom. The establishment of multicellularity and the associated extracellular compartment ("internal milieu") precedes the emergence of other key elements of the aldosterone signaling pathway.


Sujet(s)
Aldostérone/métabolisme , Canaux sodium épithéliaux/génétique , Évolution moléculaire , Sodium-Potassium-Exchanging ATPase/génétique , Sodium/métabolisme , Canaux ioniques sensibles à l'acidité , Animaux , Canaux sodiques de la famille des dégénérines , Humains , Transport des ions/effets des médicaments et des substances chimiques , Protéines membranaires/génétique , Protéines de tissu nerveux/génétique , Phosphoprotéines/génétique , Phylogenèse
18.
Kidney Int ; 79(8): 843-52, 2011 Apr.
Article de Anglais | MEDLINE | ID: mdl-21178974

RÉSUMÉ

Water balance is achieved through the ability of the kidney to control water reabsorption in the connecting tubule and the collecting duct. In a mouse cortical collecting duct cell line (mCCD(c11)), physiological concentrations of arginine vasopressin increased both electrogenic, amiloride-sensitive, epithelial sodium channel (ENaC)-mediated sodium transport measured by the short-circuit current (Isc) method and water flow (Jv apical to basal) measured by gravimetry with similar activation coefficient K(1/2) (6 and 12 pM, respectively). Jv increased linearly according to the osmotic gradient across the monolayer. A small but highly significant Jv was also measured under isoosmotic conditions. To test the coupling between sodium reabsorption and water flow, mCCD(c11) cells were treated for 24 h under isoosmotic condition with either diluent, amiloride, vasopressin or vasopressin and amiloride. Isc, Jv, and net chemical sodium fluxes were measured across the same monolayers. Around 30% of baseline and 50% of vasopressin-induced water flow is coupled to an amiloride-sensitive, ENaC-mediated, electrogenic sodium transport, whereas the remaining flow is coupled to an amiloride-insensitive, nonelectrogenic sodium transport mediated by an unknown electroneutral transporter. The mCCD(c11) cell line is a first example of a mammalian tight epithelium allowing quantitative study of the coupling between sodium and water transport. Our data are consistent with the 'near isoosmotic' fluid transport model.


Sujet(s)
Arginine vasopressine/métabolisme , Tubules collecteurs rénaux/physiologie , Sodium/métabolisme , Eau/métabolisme , Animaux , Aquaporines/métabolisme , Arginine vasopressine/pharmacologie , Lignée cellulaire , Phénomènes électrophysiologiques , Canaux sodium épithéliaux/métabolisme , Transport des ions/effets des médicaments et des substances chimiques , Cortex rénal/cytologie , Cortex rénal/effets des médicaments et des substances chimiques , Cortex rénal/physiologie , Tubules collecteurs rénaux/cytologie , Tubules collecteurs rénaux/effets des médicaments et des substances chimiques , Souris , Osmose
19.
J Am Soc Nephrol ; 22(2): 253-61, 2011 Feb.
Article de Anglais | MEDLINE | ID: mdl-21051735

RÉSUMÉ

Lithium-induced nephrogenic diabetes insipidus (NDI) is accompanied by polyuria, downregulation of aquaporin 2 (AQP2), and cellular remodeling of the collecting duct (CD). The amiloride-sensitive epithelial sodium channel (ENaC) is a likely candidate for lithium entry. Here, we subjected transgenic mice lacking αENaC specifically in the CD (knockout [KO] mice) and littermate controls to chronic lithium treatment. In contrast to control mice, KO mice did not markedly increase their water intake. Furthermore, KO mice did not demonstrate the polyuria and reduction in urine osmolality induced by lithium treatment in the control mice. Lithium treatment reduced AQP2 protein levels in the cortex/outer medulla and inner medulla (IM) of control mice but only partially reduced AQP2 levels in the IM of KO mice. Furthermore, lithium induced expression of H(+)-ATPase in the IM of control mice but not KO mice. In conclusion, the absence of functional ENaC in the CD protects mice from lithium-induced NDI. These data support the hypothesis that ENaC-mediated lithium entry into the CD principal cells contributes to the pathogenesis of lithium-induced NDI.


Sujet(s)
Diabète insipide néphrogénique/induit chimiquement , Canaux sodium épithéliaux/physiologie , Chlorure de lithium/toxicité , Absorption , Animaux , Aquaporine-2/analyse , Tubules collecteurs rénaux/métabolisme , Tubules collecteurs rénaux/anatomopathologie , Chlorure de lithium/pharmacocinétique , Souris , Souris knockout , Proton-Translocating ATPases/analyse
20.
J Am Soc Nephrol ; 21(11): 1942-51, 2010 Nov.
Article de Anglais | MEDLINE | ID: mdl-20947633

RÉSUMÉ

Mutations in α, ß, or γ subunits of the epithelial sodium channel (ENaC) can downregulate ENaC activity and cause a severe salt-losing syndrome with hyperkalemia and metabolic acidosis, designated pseudohypoaldosteronism type 1 in humans. In contrast, mice with selective inactivation of αENaC in the collecting duct (CD) maintain sodium and potassium balance, suggesting that the late distal convoluted tubule (DCT2) and/or the connecting tubule (CNT) participates in sodium homeostasis. To investigate the relative importance of ENaC-mediated sodium absorption in the CNT, we used Cre-lox technology to generate mice lacking αENaC in the aquaporin 2-expressing CNT and CD. Western blot analysis of microdissected cortical CD (CCD) and CNT revealed absence of αENaC in the CCD and weak αENaC expression in the CNT. These mice exhibited a significantly higher urinary sodium excretion, a lower urine osmolality, and an increased urine volume compared with control mice. Furthermore, serum sodium was lower and potassium levels were higher in the genetically modified mice. With dietary sodium restriction, these mice experienced significant weight loss, increased urinary sodium excretion, and hyperkalemia. Plasma aldosterone levels were significantly elevated under both standard and sodium-restricted diets. In summary, αENaC expression within the CNT/CD is crucial for sodium and potassium homeostasis and causes signs and symptoms of pseudohypoaldosteronism type 1 if missing.


Sujet(s)
Canaux sodium épithéliaux/métabolisme , Tubules collecteurs rénaux/métabolisme , Tubules rénaux/métabolisme , Potassium/métabolisme , Sodium/métabolisme , Aldostérone/sang , Animaux , Aquaporine-2/métabolisme , Canaux sodium épithéliaux/génétique , Femelle , Homéostasie/physiologie , Cortex rénal/cytologie , Cortex rénal/effets des médicaments et des substances chimiques , Cortex rénal/métabolisme , Tubules rénaux/cytologie , Tubules rénaux/effets des médicaments et des substances chimiques , Tubules collecteurs rénaux/cytologie , Tubules collecteurs rénaux/effets des médicaments et des substances chimiques , Mâle , Souris , Souris knockout , Souris transgéniques , Sodium alimentaire/pharmacologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...