Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 24
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sensors (Basel) ; 22(20)2022 Oct 18.
Article de Anglais | MEDLINE | ID: mdl-36298299

RÉSUMÉ

In this paper, we present a new LoRa transceiver scheme to ensure discrete communications secure from potential eavesdroppers by leveraging a simple and elegant spread spectrum philosophy. The scheme modifies both preamble and payload waveforms by adapting a current state-of-the-art LoRa synchronization front-end. This scheme can also be seen as a self-jamming approach. Furthermore, we introduce a new payload demodulation method that avoids the adverse effects of the traditional cross-correlation solution that would otherwise be used. Our simulation results show that the self-jamming scheme exhibits very good symbol error rate (SER) performance with a loss of just 0.5 dB for a frequency spread factor of up to 10.

2.
Elife ; 102021 12 08.
Article de Anglais | MEDLINE | ID: mdl-34878402

RÉSUMÉ

Precise quantitative information about the molecular architecture of synapses is essential to understanding the functional specificity and downstream signaling processes at specific populations of synapses. Glycine receptors (GlyRs) are the primary fast inhibitory neurotransmitter receptors in the spinal cord and brainstem. These inhibitory glycinergic networks crucially regulate motor and sensory processes. Thus far, the nanoscale organization of GlyRs underlying the different network specificities has not been defined. Here, we have quantitatively characterized the molecular arrangement and ultra-structure of glycinergic synapses in spinal cord tissue using quantitative super-resolution correlative light and electron microscopy. We show that endogenous GlyRs exhibit equal receptor-scaffold occupancy and constant packing densities of about 2000 GlyRs µm-2 at synapses across the spinal cord and throughout adulthood, even though ventral horn synapses have twice the total copy numbers, larger postsynaptic domains, and more convoluted morphologies than dorsal horn synapses. We demonstrate that this stereotypic molecular arrangement is maintained at glycinergic synapses in the oscillator mouse model of the neuromotor disease hyperekplexia despite a decrease in synapse size, indicating that the molecular organization of GlyRs is preserved in this hypomorph. We thus conclude that the morphology and size of inhibitory postsynaptic specializations rather than differences in GlyR packing determine the postsynaptic strength of glycinergic neurotransmission in motor and sensory spinal cord networks.


Sujet(s)
Récepteur de la glycine/physiologie , Récepteur de la glycine/ultrastructure , Moelle spinale/physiologie , Moelle spinale/ultrastructure , Synapses/physiologie , Synapses/ultrastructure , Animaux , Souris , Structure moléculaire
3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article de Anglais | MEDLINE | ID: mdl-34507990

RÉSUMÉ

Long-term synaptic plasticity is believed to be the cellular substrate of learning and memory. Synaptic plasticity rules are defined by the specific complement of receptors at the synapse and the associated downstream signaling mechanisms. In young rodents, at the cerebellar synapse between granule cells (GC) and Purkinje cells (PC), bidirectional plasticity is shaped by the balance between transcellular nitric oxide (NO) driven by presynaptic N-methyl-D-aspartate receptor (NMDAR) activation and postsynaptic calcium dynamics. However, the role and the location of NMDAR activation in these pathways is still debated in mature animals. Here, we show in adult rodents that NMDARs are present and functional in presynaptic terminals where their activation triggers NO signaling. In addition, we find that selective genetic deletion of presynaptic, but not postsynaptic, NMDARs prevents synaptic plasticity at parallel fiber-PC (PF-PC) synapses. Consistent with this finding, the selective deletion of GC NMDARs affects adaptation of the vestibulo-ocular reflex. Thus, NMDARs presynaptic to PCs are required for bidirectional synaptic plasticity and cerebellar motor learning.


Sujet(s)
Apprentissage/physiologie , Plasticité neuronale/physiologie , Récepteurs du N-méthyl-D-aspartate/métabolisme , Animaux , Encéphale/physiologie , Cervelet/physiologie , Potentiels post-synaptiques excitateurs/physiologie , Femelle , Humains , Potentialisation à long terme/physiologie , Dépression synaptique à long terme/physiologie , Mâle , Souris , Souris de lignée C57BL , Souris transgéniques , Activité motrice/physiologie , Neurones/métabolisme , Terminaisons présynaptiques/physiologie , Cellules de Purkinje/métabolisme , Synapses/métabolisme
4.
PLoS Biol ; 19(8): e3001375, 2021 08.
Article de Anglais | MEDLINE | ID: mdl-34428203

RÉSUMÉ

Pyramidal neurons (PNs) are covered by thousands of dendritic spines receiving excitatory synaptic inputs. The ultrastructure of dendritic spines shapes signal compartmentalization, but ultrastructural diversity is rarely taken into account in computational models of synaptic integration. Here, we developed a 3D correlative light-electron microscopy (3D-CLEM) approach allowing the analysis of specific populations of synapses in genetically defined neuronal types in intact brain circuits. We used it to reconstruct segments of basal dendrites of layer 2/3 PNs of adult mouse somatosensory cortex and quantify spine ultrastructural diversity. We found that 10% of spines were dually innervated and 38% of inhibitory synapses localized to spines. Using our morphometric data to constrain a model of synaptic signal compartmentalization, we assessed the impact of spinous versus dendritic shaft inhibition. Our results indicate that spinous inhibition is locally more efficient than shaft inhibition and that it can decouple voltage and calcium signaling, potentially impacting synaptic plasticity.


Sujet(s)
Épines dendritiques/ultrastructure , Potentiels post-synaptiques excitateurs , Potentiels post-synaptiques inhibiteurs , Modèles neurologiques , Cellules pyramidales/ultrastructure , Animaux , Signalisation calcique , Épines dendritiques/physiologie , Femelle , Souris , Microscopie électronique à balayage/méthodes , Plasticité neuronale , Grossesse , Cortex somatosensoriel/physiologie , Cortex somatosensoriel/ultrastructure
5.
Nat Cell Biol ; 21(12): 1544-1552, 2019 12.
Article de Anglais | MEDLINE | ID: mdl-31792378

RÉSUMÉ

Multiciliated cells (MCCs) amplify large numbers of centrioles that convert into basal bodies, which are required for producing multiple motile cilia. Most centrioles amplified by MCCs grow on the surface of organelles called deuterosomes, whereas a smaller number grow through the centriolar pathway in association with the two parent centrioles. Here, we show that MCCs lacking deuterosomes amplify the correct number of centrioles with normal step-wise kinetics. This is achieved through a massive production of centrioles on the surface and in the vicinity of parent centrioles. Therefore, deuterosomes may have evolved to relieve, rather than supplement, the centriolar pathway during multiciliogenesis. Remarkably, MCCs lacking parent centrioles and deuterosomes also amplify the appropriate number of centrioles inside a cloud of pericentriolar and fibrogranular material. These data show that the centriole number is set independently of their nucleation platforms and suggest that massive centriole production in MCCs is a robust process that can self-organize.


Sujet(s)
Centrioles/physiologie , Cils vibratiles/physiologie , Animaux , Cellules cultivées , Cellules HEK293 , Humains , Souris , Souris de lignée C57BL , Xenopus laevis
6.
Sci Rep ; 9(1): 13060, 2019 09 10.
Article de Anglais | MEDLINE | ID: mdl-31506528

RÉSUMÉ

Reproductive and respiratory organs, along with brain ventricles, are lined by multiciliated epithelial cells (MCC) that generate cilia-powered fluid flows. MCC hijack the centrosome duplication pathway to form hundreds of centrioles and nucleate motile cilia. In these cells, the large majority of procentrioles are formed associated with partially characterized organelles called deuterosomes. We recently challenged the paradigm that deuterosomes and procentrioles are formed de novo by providing data, in brain MCC, suggesting that they are nucleated from the pre-existing centrosomal younger centriole. However, the origin of deuterosomes and procentrioles is still under debate. Here, we further question centrosome importance for deuterosome and centriole amplification. First, we provide additional data confirming that centriole amplification occurs sequentially from the centrosomal region, and that the first procentriole-loaded deuterosomes are associated with the daughter centriole or in the centrosomal centriole vicinity. Then, to further test the requirement of the centrosome in deuterosome and centriole formation, we depleted centrosomal centrioles using a Plk4 inhibitor. We reveal unexpected limited consequences in deuterosome/centriole number in absence of centrosomal centrioles. Notably, in absence of the daughter centriole only, deuterosomes are not seen associated with the mother centriole. In absence of both centrosomal centrioles, procentrioles are still amplified sequentially and with no apparent structural defects. They seem to arise from a focal region, characterized by microtubule convergence and pericentriolar material (PCM) assembly. The relevance of deuterosome association with the daughter centriole as well as the role of the PCM in the focal and sequential genesis of centrioles in absence of centrosomal centrioles are discussed.


Sujet(s)
Encéphale/physiologie , Centrioles/métabolisme , Centrosome/métabolisme , Cils vibratiles/métabolisme , Cellules épithéliales/métabolisme , Marqueurs biologiques , Cycle cellulaire , Technique d'immunofluorescence , Humains , Imagerie moléculaire , Organites/métabolisme
7.
Protist ; 166(5): 506-21, 2015 Nov.
Article de Anglais | MEDLINE | ID: mdl-26386358

RÉSUMÉ

The marine pennate diatom Phaeodactylum tricornutum has become a model for diatom biology, due to its ease of culture and accessibility to reverse genetics approaches. While several features underlying the molecular mechanisms of cell division have been described, morphological analyses are less advanced than they are in other diatoms. We therefore examined cell ultrastructure changes prior to and during cytokinesis. Following chloroplast division, cleavage furrows are formed at both longitudinal ends of the cell and are accompanied by significant vesicle transport. Although neither spindle nor microtubules were observed, the nucleus appeared to be split by the furrow after duplication of the Golgi apparatus. Finally, centripetal cytokinesis was completed by fusion of the furrows. Additionally, F-actin formed a ring structure and its diameter became smaller, accompanying the ingrowing furrows. To further analyse vesicular transport during cytokinesis, we generated transgenic cells expressing yellow fluorescent protein (YFP) fusions with putative diatom orthologs of small GTPase Sec4 and t-SNARE protein SyntaxinA. Time-lapse observations revealed that SyntaxinA-YFP localization expands from both cell tips toward the center, whereas Sec4-YFP was found in the Golgi and subsequently relocalizes to the future division plane. This work provides fundamental new information about cell replication processes in P. tricornutum.


Sujet(s)
Protéines d'algue/métabolisme , Cytocinèse , Diatomées/physiologie , Diatomées/ultrastructure , Membrane cellulaire/métabolisme , Membrane cellulaire/ultrastructure , Diatomées/cytologie , Diatomées/métabolisme , Microscopie électronique à transmission , Organismes génétiquement modifiés/physiologie , Transport des protéines
8.
Cell Rep ; 8(5): 1271-9, 2014 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-25159150

RÉSUMÉ

Dysfunction of microglia, the tissue macrophages of the brain, has been associated with the etiology of several neuropsychiatric disorders. Consistently, microglia have been shown to regulate neurogenesis and synaptic maturation at perinatal and postnatal stages. However, microglia invade the brain during mid-embryogenesis and thus could play an earlier prenatal role. Here, we show that embryonic microglia, which display a transiently uneven distribution, regulate the wiring of forebrain circuits. Using multiple mouse models, including cell-depletion approaches and cx3cr1(-/-), CR3(-/-), and DAP12(-/-) mutants, we find that perturbing microglial activity affects the outgrowth of dopaminergic axons in the forebrain and the laminar positioning of subsets of neocortical interneurons. Since defects in both dopamine innervation and cortical networks have been linked to neuropsychiatric diseases, our study provides insights into how microglial dysfunction can impact forebrain connectivity and reveals roles for immune cells during normal assembly of brain circuits.


Sujet(s)
Microglie/métabolisme , Neurogenèse , Prosencéphale/cytologie , Récepteur du facteur de stimulation des colonies de macrophages/métabolisme , Protéines adaptatrices de la transduction du signal/génétique , Protéines adaptatrices de la transduction du signal/métabolisme , Animaux , Neurones dopaminergiques/cytologie , Neurones dopaminergiques/métabolisme , Interneurones/cytologie , Interneurones/métabolisme , Souris , Souris de lignée C57BL , Prosencéphale/embryologie , Prosencéphale/physiologie , Récepteur du facteur de stimulation des colonies de macrophages/génétique , Récepteurs à l'interleukine-8A/génétique , Récepteurs à l'interleukine-8A/métabolisme
9.
Nano Lett ; 14(6): 2994-3001, 2014 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-24754795

RÉSUMÉ

Small-molecule chemical calcium (Ca(2+)) indicators are invaluable tools for studying intracellular signaling pathways but have severe shortcomings for detecting local Ca(2+) entry. Nanobiosensors incorporating functionalized quantum dots (QDs) have emerged as promising alternatives but their intracellular use remains a major challenge. We designed cell-penetrating FRET-based Ca(2+) nanobiosensors for the detection of local Ca(2+) concentration transients, using commercially available CANdot565QD as a donor and CaRuby, a custom red-emitting Ca(2+) indicator, as an acceptor. With Ca(2+)-binding affinities covering the range of 3-20 µM, our CaRubies allow building sensors with a scalable affinity for detecting intracellular Ca(2+) transients at various concentrations. To facilitate their cytoplasmic delivery, QDs were further functionalized with a small cell-penetrating peptide (CPP) derived from hadrucalcin (HadUF1-11: H11), a ryanodine receptor-directed scorpion toxin identified within the venom of Hadrurus gertschi. Efficient internalization of QDs doubly functionalized with PEG5-CaRuby and H11 (in a molar ratio of 1:10:10, respectively) is demonstrated. In BHK cells expressing a N-methyl-d-aspartate receptor (NMDAR) construct, these nanobiosensors report rapid intracellular near-membrane Ca(2+) transients following agonist application when imaged by TIRF microscopy. Our work presents the elaboration of cell-penetrating FRET-based nanobiosensors and validates their function for detection of intracellular Ca(2+) transients.


Sujet(s)
Techniques de biocapteur/méthodes , Signalisation calcique/physiologie , Calcium/métabolisme , Peptides de pénétration cellulaire/composition chimique , Transfert d'énergie par résonance de fluorescence , Boîtes quantiques/composition chimique , Animaux , Cricetinae , Cellules HEK293 , Humains , Venins de scorpion/composition chimique
10.
Neuron ; 79(2): 308-21, 2013 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-23889935

RÉSUMÉ

The strength of synaptic transmission is controlled by the number and activity of neurotransmitter receptors. However, little is known about absolute numbers and densities of receptor and scaffold proteins and the stoichiometry of molecular interactions at synapses. Here, we conducted three-dimensional and quantitative nanoscopic imaging based on single-molecule detections to characterize the ultrastructure of inhibitory synapses and to count scaffold proteins and receptor binding sites. We observed a close correspondence between the spatial organization of gephyrin scaffolds and glycine receptors at spinal cord synapses. Endogenous gephyrin was clustered at densities of 5,000-10,000 molecules/µm(2). The stoichiometry between gephyrin molecules and receptor binding sites was approximately 1:1, consistent with a two-dimensional scaffold in which all gephyrin molecules can contribute to receptor binding. The competition of glycine and GABAA receptor complexes for synaptic binding sites highlights the potential of single-molecule imaging to quantify synaptic plasticity on the nanoscopic scale.


Sujet(s)
Protéines de transport/ultrastructure , Protéines membranaires/ultrastructure , Nanostructures/composition chimique , Nanostructures/ultrastructure , Inhibition nerveuse/physiologie , Synapses/ultrastructure , Animaux , Sites de fixation/physiologie , Protéines de transport/composition chimique , Cellules cultivées , Protéines membranaires/composition chimique , Imagerie moléculaire/méthodes , Liaison aux protéines/physiologie , Rats , Rat Sprague-Dawley , Récepteurs GABA-A/composition chimique , Récepteurs GABA-A/métabolisme , Récepteurs GABA-A/ultrastructure , Récepteur de la glycine/composition chimique , Récepteur de la glycine/métabolisme , Récepteur de la glycine/ultrastructure , Synapses/composition chimique , Synapses/métabolisme
11.
PLoS One ; 7(4): e35488, 2012.
Article de Anglais | MEDLINE | ID: mdl-22523599

RÉSUMÉ

The BCH (BNIP2 and Cdc42GAP Homology) domain-containing protein Bmcc1/Prune2 is highly enriched in the brain and is involved in the regulation of cytoskeleton dynamics and cell survival. However, the molecular mechanisms accounting for these functions are poorly defined. Here, we have identified Bmcc1s, a novel isoform of Bmcc1 predominantly expressed in the mouse brain. In primary cultures of astrocytes and neurons, Bmcc1s localized on intermediate filaments and microtubules and interacted directly with MAP6/STOP, a microtubule-binding protein responsible for microtubule cold stability. Bmcc1s overexpression inhibited MAP6-induced microtubule cold stability by displacing MAP6 away from microtubules. It also resulted in the formation of membrane protrusions for which MAP6 was a necessary cofactor of Bmcc1s. This study identifies Bmcc1s as a new MAP6 interacting protein able to modulate MAP6-induced microtubule cold stability. Moreover, it illustrates a novel mechanism by which Bmcc1 regulates cell morphology.


Sujet(s)
Protéines associées aux microtubules/métabolisme , Microtubules/effets des médicaments et des substances chimiques , Protéines de tissu nerveux/métabolisme , Isoformes de protéines/métabolisme , Séquence d'acides aminés , Animaux , Astrocytes/métabolisme , Encéphale/métabolisme , Basse température , Cellules HeLa , Humains , Souris , Protéines associées aux microtubules/effets des médicaments et des substances chimiques , Microtubules/physiologie , Données de séquences moléculaires , Protéines tumorales , Neurones/métabolisme
12.
Proc Natl Acad Sci U S A ; 109(4): E197-205, 2012 Jan 24.
Article de Anglais | MEDLINE | ID: mdl-22167804

RÉSUMÉ

Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until the discovery that astrocytes are active players of synaptic transmission. In the adult hippocampus, microglia are the other major glial cell type. Microglia are highly dynamic and closely associated with neurons and astrocytes. They react rapidly to modifications of their environment and are able to release molecules known to control neuronal function and synaptic transmission. Therefore, microglia display functional features of synaptic partners, but their involvement in the regulation of synaptic transmission has not yet been addressed. We have used a combination of pharmacological approaches with electrophysiological analysis on acute hippocampal slices and ATP assays in purified cell cultures to show that activation of microglia induces a rapid increase of spontaneous excitatory postsynaptic currents. We found that this modulation is mediated by binding of ATP to P2Y1R located on astrocytes and is independent of TNFα or NOS2. Our data indicate that, on activation, microglia cells rapidly release small amounts of ATP, and astrocytes, in turn, amplified this release. Finally, P2Y1 stimulation of astrocytes increased excitatory postsynaptic current frequency through a metabotropic glutamate receptor 5-dependent mechanism. These results indicate that microglia are genuine regulators of neurotransmission and place microglia as upstream partners of astrocytes. Because pathological activation of microglia and alteration of neurotransmission are two early symptoms of most brain diseases, our work also provides a basis for understanding synaptic dysfunction in neuronal diseases.


Sujet(s)
Astrocytes/physiologie , Potentiels post-synaptiques excitateurs/physiologie , Hippocampe/physiologie , Microglie/physiologie , Adénosine triphosphate/métabolisme , Analyse de variance , Animaux , Astrocytes/métabolisme , Astrocytes/ultrastructure , Technique de Western , Amorces ADN/génétique , Électrophysiologie , Technique d'immunofluorescence , Immunohistochimie , Souris , Souris de lignée C57BL , Souris knockout , Microglie/métabolisme , Microglie/ultrastructure , Microscopie confocale , Microscopie électronique , Réaction de polymérisation en chaine en temps réel , Récepteur-5 métabotropique du glutamate , Récepteurs métabotropes au glutamate/métabolisme , Récepteurs purinergiques P2Y1/métabolisme
13.
J Neurosci ; 31(1): 3-14, 2011 Jan 05.
Article de Anglais | MEDLINE | ID: mdl-21209184

RÉSUMÉ

Formation and stabilization of postsynaptic glycine receptor (GlyR) clusters result from their association with the polymerized scaffold protein gephyrin. At the cell surface, lateral diffusion and local trapping of GlyR by synaptic gephyrin clusters is one of the main factors controlling their number. However, the mechanisms regulating gephyrin/GlyR cluster sizes are not fully understood. To identify molecular binding partners able to control gephyrin cluster stability, we performed pull-down assays with full-length or truncated gephyrin forms incubated in a rat spinal cord extract, combined with mass spectrometric analysis. We found that heat shock cognate protein 70 (Hsc70), a constitutive member of the heat shock protein 70 (Hsp70) family, selectively binds to the gephyrin G-domain. Immunoelectron microscopy of mouse spinal cord sections showed that Hsc70 could be colocalized with gephyrin at inhibitory synapses. Furthermore, ternary Hsc70-gephyrin-GlyR coclusters were formed following transfection of COS-7 cells. Upon overexpression of Hsc70 in mouse spinal cord neurons, synaptic accumulation of gephyrin was significantly decreased, but GlyR amounts were unaffected. In the same way, Hsc70 inhibition increased gephyrin accumulation at inhibitory synapses without modifying GlyR clustering. Single particle tracking experiments revealed that the increase of gephyrin molecules reduced GlyR diffusion rates without altering GlyR residency at synapses. Our findings demonstrate that Hsc70 regulates gephyrin polymerization independently of its interaction with GlyR. Therefore, gephyrin polymerization and synaptic clustering of GlyR are uncoupled events.


Sujet(s)
Protéines de transport/métabolisme , Protéines du choc thermique HSC70/physiologie , Protéines membranaires/métabolisme , ADP/pharmacologie , Animaux , Cellules COS , Protéines de transport/génétique , Membrane cellulaire/effets des médicaments et des substances chimiques , Membrane cellulaire/génétique , Membrane cellulaire/métabolisme , Chlorocebus aethiops , Dendrites/métabolisme , Dendrites/ultrastructure , Relation dose-effet des médicaments , Protéines à fluorescence verte/génétique , Protéines du choc thermique HSC70/composition chimique , Protéines du choc thermique HSC70/génétique , Protéines du choc thermique HSC70/ultrastructure , Immunoprécipitation/méthodes , Protéines luminescentes/génétique , Mâle , Protéines membranaires/génétique , Souris , Souris de lignée C57BL , Souris transgéniques , Microscopie électronique à transmission/méthodes , Neurones/métabolisme , Neurones/ultrastructure , Polymérisation/effets des médicaments et des substances chimiques , Liaison aux protéines/effets des médicaments et des substances chimiques , Structure tertiaire des protéines/effets des médicaments et des substances chimiques , Structure tertiaire des protéines/génétique , Transport des protéines/effets des médicaments et des substances chimiques , Transport des protéines/génétique , Protéomique/méthodes , Rats , Récepteur de la glycine/génétique , Récepteur de la glycine/ultrastructure , Moelle spinale/cytologie , Moelle spinale/métabolisme , Synapses/métabolisme , Synapses/ultrastructure , Transfection/méthodes ,
14.
Neuron ; 66(2): 235-47, 2010 Apr 29.
Article de Anglais | MEDLINE | ID: mdl-20435000

RÉSUMÉ

Miniature synaptic currents have long been known to represent random transmitter release under resting conditions, but much remains to be learned about their nature and function in central synapses. In this work, we describe a new class of miniature currents ("preminis") that arise by the autocrine activation of axonal receptors following random vesicular release. Preminis are prominent in gabaergic synapses made by cerebellar interneurons during the development of the molecular layer. Unlike ordinary miniature postsynaptic currents in the same cells, premini frequencies are strongly enhanced by subthreshold depolarization, suggesting that the membrane depolarization they produce belongs to a feedback loop regulating neurotransmitter release. Thus, preminis could guide the formation of the interneuron network by enhancing neurotransmitter release at recently formed synaptic contacts.


Sujet(s)
Interneurones/physiologie , Inhibition nerveuse/physiologie , Terminaisons présynaptiques/physiologie , Transmission synaptique/physiologie , Acide gamma-amino-butyrique/métabolisme , Animaux , Cervelet/métabolisme , Cervelet/physiologie , Électrophysiologie , Potentiels post-synaptiques inhibiteurs/physiologie , Interneurones/métabolisme , Microscopie électronique , Potentiels post-synaptiques miniatures/physiologie , Terminaisons présynaptiques/métabolisme , Rats , Rat Sprague-Dawley , Synapses/métabolisme , Synapses/physiologie
15.
Neuron ; 65(1): 53-65, 2010 Jan 14.
Article de Anglais | MEDLINE | ID: mdl-20152113

RÉSUMÉ

The density of GABA(A) receptors (GABA(A)Rs) at synapses regulates brain excitability, and altered inhibition may contribute to Huntington's disease, which is caused by a polyglutamine repeat in the protein huntingtin. However, the machinery that delivers GABA(A)Rs to synapses is unknown. We demonstrate that GABA(A)Rs are trafficked to synapses by the kinesin family motor protein 5 (KIF5). We identify the adaptor linking the receptors to KIF5 as the huntingtin-associated protein 1 (HAP1). Disrupting the HAP1-KIF5 complex decreases synaptic GABA(A)R number and reduces the amplitude of inhibitory postsynaptic currents. When huntingtin is mutated, as in Huntington's disease, GABA(A)R transport and inhibitory synaptic currents are reduced. Thus, HAP1-KIF5-dependent GABA(A)R trafficking is a fundamental mechanism controlling the strength of synaptic inhibition in the brain. Its disruption by mutant huntingtin may explain some of the defects in brain information processing occurring in Huntington's disease and provides a molecular target for therapeutic approaches.


Sujet(s)
Kinésine/métabolisme , Protéines de tissu nerveux/métabolisme , Protéines nucléaires/métabolisme , Isoformes de protéines/métabolisme , Récepteurs GABA-A/métabolisme , Synapses/métabolisme , Animaux , Membrane cellulaire/métabolisme , Cellules cultivées , Humains , Protéine huntingtine , Maladie de Huntington/métabolisme , Kinésine/génétique , Protéines de tissu nerveux/génétique , Neurones/cytologie , Neurones/métabolisme , Protéines nucléaires/génétique , Techniques de patch-clamp , Peptides/génétique , Peptides/métabolisme , Isoformes de protéines/génétique , Rats , Rat Sprague-Dawley , Récepteurs GABA-A/génétique , Synapses/ultrastructure , Transmission synaptique/physiologie
16.
J Neurosci ; 27(34): 9022-31, 2007 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-17715339

RÉSUMÉ

The parallel fibers relay information coming into the cerebellar cortex from the mossy fibers, and they form synapses with molecular layer interneurons (MLIs) and Purkinje cells. Here we show that activation of ionotropic GABA receptors (GABA(A)Rs) induces glutamate release from parallel fibers onto both MLIs and Purkinje cells. These GABA-induced EPSCs have kinetics and amplitudes identical to random spontaneous currents (sEPSCs), but, unlike sEPSCs, they occur in bursts of between one and five successive events. The variation in amplitude of events within bursts is significantly less than the variation of all sEPSC amplitudes, suggesting that the bursts result from repetitive activation of single presynaptic fibers. Electron microscopy of immunogold-labeled alpha-1 subunits revealed GABA(A)Rs on parallel fiber terminals. We suggest that the activation of these receptors underlies the increased amplitude of parallel fiber-evoked Purkinje cell EPSCs seen with application of exogenous GABA or after the release of GABA from local interneurons. These results occur only when molecular layer GABA(A)Rs are activated, and the effects are abolished when the receptors are blocked by the GABA(A)R antagonist gabazine (5 microM). From these data, we conclude that GABA(A)Rs located on parallel fibers depolarize parallel fiber terminals beyond the threshold for Na+ channel activation and thereby induce glutamate release onto MLIs and Purkinje cells.


Sujet(s)
Cervelet/cytologie , Acide glutamique/métabolisme , Terminaisons présynaptiques/métabolisme , Récepteurs GABA-A/physiologie , Synapses/métabolisme , Animaux , Animaux nouveau-nés , Stimulation électrique/méthodes , Potentiels post-synaptiques excitateurs/effets des médicaments et des substances chimiques , Potentiels post-synaptiques excitateurs/effets des radiations , Agonistes GABA/pharmacologie , Antagonistes GABA/pharmacologie , Techniques in vitro , Interneurones/cytologie , Microscopie électronique à transmission/méthodes , Muscimol/pharmacologie , Techniques de patch-clamp/méthodes , Acides phosphiniques/pharmacologie , Terminaisons présynaptiques/effets des radiations , Terminaisons présynaptiques/ultrastructure , Propanolamines/pharmacologie , Cellules de Purkinje/cytologie , Rats , Synapses/ultrastructure , Facteurs temps , Acide gamma-amino-butyrique/pharmacologie
17.
J Neurosci ; 27(26): 6868-77, 2007 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-17596435

RÉSUMÉ

Presynaptic terminals are specialized for mediating rapid fusion of synaptic vesicles (SVs) after calcium influx. The regulated trafficking of SVs likely results from a highly organized cytomatrix. How this cytomatrix links SVs, maintains them near the active zones (AZs) of release, and organizes docked SVs at the release sites is not fully understood. To analyze the three-dimensional (3D) architecture of the presynaptic cytomatrix, electron tomography of presynaptic terminals contacting spines was performed in the stratum radiatum of the rat hippocampal CA1 area. To preserve the cytomatrix, hippocampal slices were immobilized using high-pressure freezing, followed by cryosubstitution and embedding. SVs are surrounded by a dense network of filaments. A given vesicle is connected to approximately 1.5 neighboring ones. SVs at the periphery of this network are also linked to the plasma membrane, by longer filaments. More of these filaments are found at the AZ. At the AZ, docked SVs are grouped around presynaptic densities. Filaments with adjacent SVs emerge from these densities. Immunogold localizations revealed that synapsin is located in the presynaptic bouton, whereas Bassoon and CAST (ERC2) are at focal points next to the AZ. In synapsin triple knock-out mice, the number of SVs is reduced by 63%, but the size of the boutons is reduced by only 18%, and the mean distance of SVs to the AZ is unchanged. This 3D analysis reveals the morphological constraints exerted by the presynaptic molecular scaffold. SVs are tightly interconnected in the axonal bouton, and this network is preferentially connected to the AZ.


Sujet(s)
Épines dendritiques/ultrastructure , Matrice extracellulaire/ultrastructure , Hippocampe/ultrastructure , Terminaisons présynaptiques/ultrastructure , Protéines adaptatrices de la transduction du signal/métabolisme , Animaux , Épines dendritiques/métabolisme , Matrice extracellulaire/métabolisme , Hippocampe/métabolisme , Cytométrie en images , Mâle , Souris , Souris de lignée C57BL , Souris knockout , Protéines de tissu nerveux/métabolisme , Techniques de culture d'organes , Terminaisons présynaptiques/métabolisme , Rats , Rat Sprague-Dawley , Synapsine/génétique , Synapsine/métabolisme , Membranes synaptiques/métabolisme , Membranes synaptiques/ultrastructure , Transmission synaptique/physiologie , Vésicules synaptiques/métabolisme , Vésicules synaptiques/ultrastructure , Tomodensitométrie
18.
Cell ; 127(2): 277-89, 2006 Oct 20.
Article de Anglais | MEDLINE | ID: mdl-17055430

RÉSUMÉ

The auditory inner hair cell (IHC) ribbon synapse operates with an exceptional temporal precision and maintains a high level of neurotransmitter release. However, the molecular mechanisms underlying IHC synaptic exocytosis are largely unknown. We studied otoferlin, a predicted C2-domain transmembrane protein, which is defective in a recessive form of human deafness. We show that otoferlin expression in the hair cells correlates with afferent synaptogenesis and find that otoferlin localizes to ribbon-associated synaptic vesicles. Otoferlin binds Ca(2+) and displays Ca(2+)-dependent interactions with the SNARE proteins syntaxin1 and SNAP25. Otoferlin deficient mice (Otof(-/-)) are profoundly deaf. Exocytosis in Otof(-/-) IHCs is almost completely abolished, despite normal ribbon synapse morphogenesis and Ca(2+) current. Thus, otoferlin is essential for a late step of synaptic vesicle exocytosis and may act as the major Ca(2+) sensor triggering membrane fusion at the IHC ribbon synapse.


Sujet(s)
Cochlée/métabolisme , Surdité/métabolisme , Exocytose , Cellules ciliées auditives internes/métabolisme , Protéines membranaires/métabolisme , Synapses/métabolisme , Animaux , Voies auditives/métabolisme , Calcium/métabolisme , Cochlée/croissance et développement , Surdité/génétique , Surdité/physiopathologie , Potentiels évoqués auditifs du tronc cérébral , Cellules ciliées auditives internes/ultrastructure , Humains , Fusion membranaire , Protéines membranaires/déficit , Protéines membranaires/génétique , Souris , Souris de lignée C57BL , Souris knockout , Transmission synaptique , Vésicules synaptiques/métabolisme , Protéine SNAP-25/métabolisme , Syntaxine-1/métabolisme , Facteurs temps
19.
Eur J Neurosci ; 24(12): 3463-74, 2006 Dec.
Article de Anglais | MEDLINE | ID: mdl-17229095

RÉSUMÉ

Electron microscopy allows the analysis of synaptic ultrastructure and its modifications during learning or in pathological conditions. However, conventional electron microscopy uses aldehyde fixatives that alter the morphology of the synapse by changing osmolarity and collapsing its molecular components. We have used high-pressure freezing (HPF) to capture within a few milliseconds structural features without aldehyde fixative, and thus to provide a snapshot of living synapses. CA1 hippocampal area slices from P21 rats were frozen at -173 degrees C under high pressure to reduce crystal formation, and synapses on dendritic spines were analysed after cryosubstitution and embedding. Synaptic terminals were larger than after aldehyde fixation, and synaptic vesicles in these terminals were less densely packed. Small filaments linked the vesicles in subgroups. The postsynaptic densities (PSDs) exhibited filamentous projections extending into the spine cytoplasm. Tomographic analysis showed that these projections were connected with the spine cytoskeletal meshwork. Using immunocytochemistry, we found as expected GluR1 at the synaptic cleft and CaMKII in the PSD. Actin immunoreactivity (IR) labelled the cytoskeletal meshwork beneath the filamentous projections, but was very scarce within the PSD itself. ProSAP2/Shank3, cortactin and Ena/VASP-IRs were concentrated on the cytoplasmic face of the PSD, at the level of the PSD projections. Synaptic ultrastructure after HPF was different from that observed after aldehyde fixative. The boutons were larger, and filamentous components were preserved. Particularly, filamentous projections were observed linking the PSD to the actin cytoskeleton. Thus, synaptic ultrastructure can be analysed under more realistic conditions following HPF.


Sujet(s)
Cryoconservation/méthodes , Synapses/ultrastructure , Tomographie , Aldéhydes/pharmacologie , Animaux , Animaux nouveau-nés , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calcium-Calmodulin-Dependent Protein Kinases/métabolisme , Cortactine/métabolisme , Congélation , Hippocampe/ultrastructure , Microscopie électronique à transmission/méthodes , Microscopie immunoélectronique/méthodes , Rats , Récepteurs au glutamate/métabolisme , Synapses/effets des médicaments et des substances chimiques , Synapses/métabolisme , Fixation tissulaire/méthodes
20.
Mol Cell Neurosci ; 27(4): 394-403, 2004 Dec.
Article de Anglais | MEDLINE | ID: mdl-15555918

RÉSUMÉ

Inhibitory transmission in the hippocampus is predominantly GABAergic, but electrophysiological data evidenced strychnine-sensitive glycine-induced currents. However, synaptic currents have not been reported. Here, we describe, for the first time, the presence of GlyR clusters in several areas of the hippocampus as well as in cultured hippocampal neurons. In contrast with spinal cord, hippocampal GlyRs contain alpha2 but no alpha1 subunit. Optical and electron microscopy indicates that GlyRs can be synaptic as well as extrasynaptic. Synaptic GlyRs were apposed to glycinergic boutons characterized by the expression of the vesicular and the plasma membrane transporters of glycine (VIAAT and GlyT2, respectively). Double labeling with calcium-binding proteins showed that GlyT2 could be detected in boutons innervating both excitatory cells (soma and dendrites) and interneurons. Finally, GlyR clusters could be detected at synaptic sites with the GABAA receptor gamma2 subunit and gephyrin, suggesting that mixed GABA/glycine synapses might exist in the hippocampus.


Sujet(s)
Glycine/métabolisme , Hippocampe/métabolisme , Inhibition nerveuse/physiologie , Synapses/métabolisme , Systèmes de transport d'acides aminés/métabolisme , Systèmes de transport d'acides aminés neutres/métabolisme , Animaux , Protéines de liaison au calcium/métabolisme , Protéines de transport/métabolisme , Cellules cultivées , Dendrites/métabolisme , Dendrites/ultrastructure , Transporteurs de la glycine , Hippocampe/ultrastructure , Immunohistochimie , Interneurones/métabolisme , Interneurones/ultrastructure , Protéines membranaires/métabolisme , Microscopie électronique à transmission , Terminaisons présynaptiques/métabolisme , Terminaisons présynaptiques/ultrastructure , Sous-unités de protéines/métabolisme , Rats , Rat Sprague-Dawley , Agrégation des récepteurs/physiologie , Récepteurs GABA-A/métabolisme , Synapses/ultrastructure , Membranes synaptiques/métabolisme , Membranes synaptiques/ultrastructure , Transmission synaptique/physiologie , Transporteurs vésiculaires des acides aminés inhibiteurs , Protéines du transport vésiculaire/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...