Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Phys Chem Chem Phys ; 20(46): 29038-29044, 2018 Nov 28.
Article de Anglais | MEDLINE | ID: mdl-30406789

RÉSUMÉ

Spontaneous orientation of molecular dipoles has been observed to produce bulk electric fields, termed 'spontelectric' fields, in a broad variety of molecular solid thin films formed by condensation from the gas phase. Such spontelectric fields are found in cis-methyl formate (cis-MF) and the present work combines observation of these fields with high quality ab initio studies of cis-MF monomers and dimers. This enables a prediction of the structural motif within the unit cell of the crystalline phase of solid cis-MF, showing it to be a non-polar dimer. Dimer formation at deposition temperatures of >90 K is therefore cited to contribute to the observed collapse of the spontelectric field at these temperatures. This is the first time that such a structural prediction has been made using observations of spontelectric behaviour as a key indicator.

2.
Phys Chem Chem Phys ; 20(7): 5112-5116, 2018 Feb 14.
Article de Anglais | MEDLINE | ID: mdl-29392261

RÉSUMÉ

Using reflection-absorption infrared spectroscopy (RAIRS), we show that solids displaying spontaneous dipole orientation possess quite general non-local and non-linear characteristics, exemplified through their internal electric fields. The most graphic illustration of this, uncovered originally through electron beam studies, may be found in films of cis-methyl formate (cis-MF), for which data demonstrated the counter-intuitive property that the degree of dipole order in the film does not monotonically decrease as the temperature of deposition rises, but rather increases sharply above ∼77 K. Here we show how RAIRS provides independent evidence to support this conclusion. These new data confirm (i) that the behaviour of spontelectrics is governed by an expression for the degree of dipole orientation, which is continuous in temperature, but with a discontinuity in the derivative, and (ii) that the temperature of deposition associated with this discontinuity matches the temperature above which dipole order switches from the expected reduction with temperature to an increase with temperature.

3.
Phys Chem Chem Phys ; 20(8): 5368-5376, 2018 Feb 21.
Article de Anglais | MEDLINE | ID: mdl-28956031

RÉSUMÉ

Temperature-programmed desorption (TPD) and reflection-absorption infrared spectroscopy (RAIRS) are used to probe the effect of atomic and molecular oxygen (O and O2) beams on amorphous silica (aSiO2) and water (H2O) surfaces (porous-amorphous solid water; p-ASW, compact amorphous solid water; c-ASW, and crystalline solid water; CSW). Altering the deposition method of O2 is shown to result in different desorption energies of O2 due to differences in O2 film morphology when deposited on the aSiO2 surface. O2 enthalpy of formation is dissipated into the aSiO2 substrate without changes in the silica network. However, on the H2O surfaces, O2 formation enthalpy release is dissipated into the H-bonded matrix leading to morphological changes, possibly compacting p-ASW into c-ASW while CSW appears to undergo amorphisation. The enthalpy release from O2 formation is, however, not enough to result in reactive desorption of O2 or H2O under the current experimental circumstances. Further to this, O2 formation on sub-monolayer quantities of H2O leads to enhanced de-wetting and a greater degree of H-bond reconnection in H2O agglomerates. Lastly, O3 is observed from the O + O2 reaction on all surfaces studied.

4.
Phys Rev Lett ; 119(15): 157703, 2017 Oct 13.
Article de Anglais | MEDLINE | ID: mdl-29077429

RÉSUMÉ

The absorption of light to create Wannier-Mott excitons is a fundamental feature dictating the optical and photovoltaic properties of low band gap, high permittivity semiconductors. Such excitons, with an electron-hole separation an order of magnitude greater than lattice dimensions, are largely limited to these semiconductors but here we find evidence of Wannier-Mott exciton formation in solid carbon monoxide (CO) with a band gap of >8 eV and a low electrical permittivity. This is established through the observation that a change of a few degrees K in deposition temperature can shift the electronic absorption spectra of solid CO by several hundred wave numbers, coupled with the recent discovery that deposition of CO leads to the spontaneous formation of electric fields within the film. These so-called spontelectric fields, here approaching 4×10^{7} V m^{-1}, are strongly temperature dependent. We find that a simple electrostatic model reproduces the observed temperature dependent spectral shifts based on the Stark effect on a hole and electron residing several nm apart, identifying the presence of Wannier-Mott excitons. The spontelectric effect in CO simultaneously explains the long-standing enigma of the sensitivity of vacuum ultraviolet spectra to the deposition temperature.

5.
Rev Sci Instrum ; 86(5): 055103, 2015 May.
Article de Anglais | MEDLINE | ID: mdl-26026554

RÉSUMÉ

Although several research groups have studied the formation of H2 on interstellar dust grains using surface science techniques, few have explored the formation of more complex molecules. A small number of these reactions produce molecules that remain on the surface of interstellar dust grains and, over time, lead to the formation of icy mantles. The most abundant of these species within the ice is H2O and is of particular interest as the observed molecular abundance cannot be accounted for using gas-phase chemistry alone. This article provides a brief introduction to the astronomical implications and motivations behind this research and the requirement for a new dual atomic beam ultrahigh vacuum (UHV) system. Further details of the apparatus design, characterisation, and calibration of the system are provided along with preliminary data from atomic O and O2 beam dosing on bare silica substrate and subsequent temperature programmed desorption measurements. The results obtained in this ongoing research may enable more chemically accurate surface formation mechanisms to be deduced for this and other species before simulating the kinetic data under interstellar conditions.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...