Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Elife ; 122023 03 21.
Article de Anglais | MEDLINE | ID: mdl-36942939

RÉSUMÉ

Pancreatic ductal adenocarcinoma (PDAC) continues to show no improvement in survival rates. One aspect of PDAC is elevated ATP levels, pointing to the purinergic axis as a potential attractive therapeutic target. Mediated in part by highly druggable extracellular proteins, this axis plays essential roles in fibrosis, inflammation response, and immune function. Analyzing the main members of the PDAC extracellular purinome using publicly available databases discerned which members may impact patient survival. P2RY2 presents as the purinergic gene with the strongest association with hypoxia, the highest cancer cell-specific expression, and the strongest impact on overall survival. Invasion assays using a 3D spheroid model revealed P2Y2 to be critical in facilitating invasion driven by extracellular ATP. Using genetic modification and pharmacological strategies, we demonstrate mechanistically that this ATP-driven invasion requires direct protein-protein interactions between P2Y2 and αV integrins. DNA-PAINT super-resolution fluorescence microscopy reveals that P2Y2 regulates the amount and distribution of integrin αV in the plasma membrane. Moreover, receptor-integrin interactions were required for effective downstream signaling, leading to cancer cell invasion. This work elucidates a novel GPCR-integrin interaction in cancer invasion, highlighting its potential for therapeutic targeting.


Sujet(s)
Carcinome du canal pancréatique , Tumeurs du pancréas , Humains , Lignée cellulaire tumorale , Tumeurs du pancréas/anatomopathologie , Carcinome du canal pancréatique/anatomopathologie , Invasion tumorale/génétique , Adénosine triphosphate/métabolisme , Intégrines/métabolisme , Prolifération cellulaire/génétique , Mouvement cellulaire , Régulation de l'expression des gènes tumoraux , Récepteurs purinergiques P2Y2/génétique , Récepteurs purinergiques P2Y2/métabolisme
2.
J Biol Chem ; 299(5): 104649, 2023 05.
Article de Anglais | MEDLINE | ID: mdl-36965618

RÉSUMÉ

The assembly of membrane-less organelles such as stress granules (SGs) is emerging as central in helping cells rapidly respond and adapt to stress. Following stress sensing, the resulting global translational shutoff leads to the condensation of stalled mRNAs and proteins into SGs. By reorganizing cytoplasmic contents, SGs can modulate RNA translation, biochemical reactions, and signaling cascades to promote survival until the stress is resolved. While mechanisms for SG disassembly are not widely understood, the resolution of SGs is important for maintaining cell viability and protein homeostasis. Mutations that lead to persistent or aberrant SGs are increasingly associated with neuropathology and a hallmark of several neurodegenerative diseases. Mutations in CLN3 are causative of juvenile neuronal ceroid lipofuscinosis, a rare neurodegenerative disease affecting children also known as Batten disease. CLN3 encodes a transmembrane lysosomal protein implicated in autophagy, endosomal trafficking, metabolism, and response to oxidative stress. Using a HeLa cell model lacking CLN3, we now show that CLN3KO is associated with an altered metabolic profile, reduced global translation, and altered stress signaling. Furthermore, loss of CLN3 function results in perturbations in SG dynamics, resulting in assembly and disassembly defects, and altered expression of the key SG nucleating factor G3BP1. With a growing interest in SG-modulating drugs for the treatment of neurodegenerative diseases, novel insights into the molecular basis of CLN3 Batten disease may reveal avenues for disease-modifying treatments for this debilitating childhood disease.


Sujet(s)
Expression des gènes , Chaperons moléculaires , Céroïdes-lipofuscinoses neuronales , Granules de stress , Humains , Cellules HeLa , Chaperons moléculaires/génétique , Chaperons moléculaires/métabolisme , Céroïdes-lipofuscinoses neuronales/génétique , Céroïdes-lipofuscinoses neuronales/physiopathologie , Granules de stress/génétique , Granules de stress/anatomopathologie , Stress physiologique/génétique , Transduction du signal/génétique , Expression des gènes/génétique , Lignée cellulaire
3.
Science ; 372(6544): 808-814, 2021 05 21.
Article de Anglais | MEDLINE | ID: mdl-33858992

RÉSUMÉ

Obesity is a global epidemic that causes morbidity and impaired quality of life. The melanocortin receptor 4 (MC4R) is at the crux of appetite, energy homeostasis, and body-weight control in the central nervous system and is a prime target for anti-obesity drugs. Here, we present the cryo-electron microscopy (cryo-EM) structure of the human MC4R-Gs signaling complex bound to the agonist setmelanotide, a cyclic peptide recently approved for the treatment of obesity. The work reveals the mechanism of MC4R activation, highlighting a molecular switch that initiates satiation signaling. In addition, our findings indicate that calcium (Ca2+) is required for agonist, but not antagonist, efficacy. These results fill a gap in the understanding of MC4R activation and could guide the design of future weight-management drugs.


Sujet(s)
Agents antiobésité/composition chimique , Récepteur de la mélanocortine de type 4/agonistes , Récepteur de la mélanocortine de type 4/composition chimique , Satiété , Hormone mélanotrope alpha/analogues et dérivés , Agents antiobésité/pharmacologie , Appétit , Sites de fixation , Calcium/composition chimique , Calcium/physiologie , Cryomicroscopie électronique , Conception de médicament , Cellules HEK293 , Humains , Ligands , Mutation , Obésité/traitement médicamenteux , Obésité/métabolisme , Structure en hélice alpha , Domaines protéiques , Récepteur de la mélanocortine de type 4/génétique , Transduction du signal , Hormone mélanotrope alpha/composition chimique , Hormone mélanotrope alpha/pharmacologie
4.
J Am Chem Soc ; 142(40): 16953-16964, 2020 10 07.
Article de Anglais | MEDLINE | ID: mdl-32902974

RÉSUMÉ

Pharmacological modulation of cannabinoid type 2 receptor (CB2R) holds promise for the treatment of numerous conditions, including inflammatory diseases, autoimmune disorders, pain, and cancer. Despite the significance of this receptor, researchers lack reliable tools to address questions concerning the expression and complex mechanism of CB2R signaling, especially in cell-type and tissue-dependent contexts. Herein, we report for the first time a versatile ligand platform for the modular design of a collection of highly specific CB2R fluorescent probes, used successfully across applications, species, and cell types. These include flow cytometry of endogenously expressing cells, real-time confocal microscopy of mouse splenocytes and human macrophages, as well as FRET-based kinetic and equilibrium binding assays. High CB2R specificity was demonstrated by competition experiments in living cells expressing CB2R at native levels. The probes were effectively applied to FACS analysis of microglial cells derived from a mouse model relevant to Alzheimer's disease.


Sujet(s)
Maladie d'Alzheimer/métabolisme , Colorants fluorescents/composition chimique , Microglie/métabolisme , Récepteur cannabinoïde de type CB2/analyse , Animaux , Cellules CHO , Cricetulus , Modèles animaux de maladie humaine , Cytométrie en flux , Transfert d'énergie par résonance de fluorescence , Humains , Ligands , Souris , Simulation de docking moléculaire , Sondes moléculaires/composition chimique , Imagerie optique , Sensibilité et spécificité , Transduction du signal
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE