Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 34
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Hum Evol ; 194: 103579, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39173445

RÉSUMÉ

A hominin mandible, KNM-ER 63000, and associated vertebrate remains were recovered in 2011 from Area 40 in East Turkana, Kenya. Tephrostratigraphic and magnetostratigraphic analyses indicate that these fossils date to ∼4.3 Ma. KNM-ER 63000 consists of articulating but worn and weathered mandibular corpora, with a broken right M2 crown and alveoli preserved at other tooth positions. Despite extensive damage, KNM-ER 63000 preserves diagnostic anatomy permitting attribution to Australopithecus anamensis. It can be distinguished from Australopithecus afarensis by its strongly inclined symphyseal axis with a basally convex, 'cut-away' external surface, a lateral corpus that sweeps inferomedially beneath the canine-premolar row, and alignment of the canine alveolus with the postcanine axis. KNM-ER 63000 is distinguished from Ardipithecus ramidus by its thick mandibular corpus and large M2 crown. The functional trait structure and enamel's stable carbon isotopic composition of the Area 40 large-mammal community suggests an environment comparable to Kanapoi and other ∼4.5-4 Ma eastern African sites that would have offered Au. anamensis access to both C3 and C4 food resources. With an age of ∼4.3 Ma, KNM-ER 63000 is the oldest known specimen of Au. anamensis, predating the Kanapoi and Asa Issie samples by at least ∼100 kyr. This specimen extends the known temporal range of Au. anamensis and places it in temporal overlap with fossils of Ar. ramidus from Gona, Ethiopia. The morphology of KNM-ER 63000 indicates that the reconfigured masticatory system differentiating basal hominins from the earliest australopiths existed in the narrow temporal window, if any, separating the two. The very close temporal juxtaposition of these significant morphological and adaptive differences implies that Ar. ramidus was a relative rather than a direct phyletic ancestor of earliest Australopithecus.


Sujet(s)
Fossiles , Hominidae , Mandibule , Animaux , Fossiles/anatomie et histologie , Kenya , Hominidae/anatomie et histologie , Mandibule/anatomie et histologie , Environnement
2.
Nat Ecol Evol ; 8(9): 1751-1759, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39009848

RÉSUMÉ

Eastern Africa preserves the most complete record of human evolution anywhere in the world but we have little knowledge of how long-term biogeographic dynamics in the region influenced hominin diversity and distributions. Here, we use spatial beta diversity analyses of mammal fossil records from the East African Rift System to reveal long-term biotic homogenization (increasing compositional similarity of faunas) over the last 6 Myr. Late Miocene and Pliocene faunas (~6-3 million years ago (Ma)) were largely composed of endemic species, with the shift towards biotic homogenization after ~3 Ma being driven by the loss of endemic species across functional groups and a growing number of shared grazing species. This major biogeographic transition closely tracks the regional expansion of grass-dominated ecosystems. Although grazers exhibit low beta diversity in open environments of the Early Pleistocene, the high beta diversity of Mio-Pliocene browsers and frugivores occurred in the context of extensive woody vegetation. We identify other key aspects of the Late Cenozoic biogeographic development of eastern Africa, their likely drivers and place the hominin fossil record in this context. Because hominins were undoubtedly influenced by many of the same factors as other eastern African mammals, this provides a new perspective on the links between environmental and human evolutionary histories.


Sujet(s)
Évolution biologique , Fossiles , Hominidae , Mammifères , Animaux , Afrique de l'Est , Biodiversité , Écosystème
3.
Biol Lett ; 20(7): 20240185, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39045658

RÉSUMÉ

The announcement in 1925 by Raymond Dart of the discovery of the Taung juvenile's skull in a quarry in sub-Saharan Africa is deservedly a classic publication in the history of palaeoanthropology. Dart's paper-which designated Taung as the type specimen of the early hominin species Australopithecus africanus-provided the first fossil evidence supporting Charles Darwin's 1871 prediction that Africa was where the human lineage originated. The Taung juvenile's combination of ape and human characteristics eventually led to a paradigm shift in our understanding of human evolution. This contribution focuses on the milieu in which Dart's paper appeared (i.e. what was understood in 1925 about human evolution), the fossil evidence as set out by Dart, his interpretation of how a species represented by a fossilized juvenile's skull fitted within prevailing narratives about human evolution and the significance of the fossil being found in an environment inferred to be very different from that occupied by living apes. We also briefly review subsequent fossil finds that have corroborated the argument Dart made for having discovered evidence of a hitherto unknown close relative of humans, and summarize our current understanding of the earliest stages of human evolution and its environmental context.


Sujet(s)
Évolution biologique , Fossiles , Hominidae , Crâne , Animaux , Hominidae/anatomie et histologie , Fossiles/anatomie et histologie , Crâne/anatomie et histologie , Humains , Histoire du 20ème siècle , Afrique
4.
Ecol Evol ; 14(2): e11050, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38362169

RÉSUMÉ

Though herbivore grass dependence has been shown to increase with body size across herbivore species, it is unclear whether this relationship holds at the community level. Here we evaluate whether grass consumption scales positively with body size within African large mammalian herbivore communities and how this relationship varies with environmental context. We used stable carbon isotope and community occurrence data to investigate how grass dependence scales with body size within 23 savanna herbivore communities throughout eastern and central Africa. We found that dietary grass fraction increased with body size for the majority of herbivore communities considered, especially when complete community data were available. However, the slope of this relationship varied, and rainfall seasonality and elephant presence were key drivers of the variation-grass dependence increased less strongly with body size where rainfall was more seasonal and where elephants were present. We found also that the dependence of the herbivore community as a whole on grass peaked at intermediate woody cover. Intraspecific diet variation contributed to these community-level patterns: common hippopotamus (Hippopotamus amphibius) and giraffe (Giraffa camelopardalis) ate less grass where rainfall was more seasonal, whereas Cape buffalo (Syncerus caffer) and savanna elephant (Loxodonta africana) grass consumption were parabolically related to woody cover. Our results indicate that general rules appear to govern herbivore community assembly, though some aspects of herbivore foraging behavior depend upon local environmental context.

5.
Science ; 377(6609): 1008-1011, 2022 08 26.
Article de Anglais | MEDLINE | ID: mdl-36007038

RÉSUMÉ

Food webs influence ecosystem diversity and functioning. Contemporary defaunation has reduced food web complexity, but simplification caused by past defaunation is difficult to reconstruct given the sparse paleorecord of predator-prey interactions. We identified changes to terrestrial mammal food webs globally over the past ~130,000 years using extinct and extant mammal traits, geographic ranges, observed predator-prey interactions, and deep learning models. Food webs underwent steep regional declines in complexity through loss of food web links after the arrival and expansion of human populations. We estimate that defaunation has caused a 53% decline in food web links globally. Although extinctions explain much of this effect, range losses for extant species degraded food webs to a similar extent, highlighting the potential for food web restoration via extant species recovery.


Sujet(s)
Effets anthropiques , Extinction biologique , Chaine alimentaire , Animaux , Apprentissage profond , Humains , Mammifères , Comportement prédateur
6.
Nat Ecol Evol ; 6(6): 659, 2022 Jun.
Article de Anglais | MEDLINE | ID: mdl-35414720
7.
PeerJ ; 10: e13210, 2022.
Article de Anglais | MEDLINE | ID: mdl-35411256

RÉSUMÉ

The Early Pleistocene was a critical time period in the evolution of eastern African mammal faunas, but fossil assemblages sampling this interval are poorly known from Ethiopia's Afar Depression. Field work by the Hadar Research Project in the Busidima Formation exposures (~2.7-0.8 Ma) of Hadar in the lower Awash Valley, resulted in the recovery of an early Homo maxilla (A.L. 666-1) with associated stone tools and fauna from the Maka'amitalu basin in the 1990s. These assemblages are dated to ~2.35 Ma by the Bouroukie Tuff 3 (BKT-3). Continued work by the Hadar Research Project over the last two decades has greatly expanded the faunal collection. Here, we provide a comprehensive account of the Maka'amitalu large mammals (Artiodactyla, Carnivora, Perissodactyla, Primates, and Proboscidea) and discuss their paleoecological and biochronological significance. The size of the Maka'amitalu assemblage is small compared to those from the Hadar Formation (3.45-2.95 Ma) and Ledi-Geraru (2.8-2.6 Ma) but includes at least 20 taxa. Bovids, suids, and Theropithecus are common in terms of both species richness and abundance, whereas carnivorans, equids, and megaherbivores are rare. While the taxonomic composition of the Maka'amitalu fauna indicates significant species turnover from the Hadar Formation and Ledi-Geraru deposits, turnover seems to have occurred at a constant rate through time as taxonomic dissimilarity between adjacent fossil assemblages is strongly predicted by their age difference. A similar pattern characterizes functional ecological turnover, with only subtle changes in dietary proportions, body size proportions, and bovid abundances across the composite lower Awash sequence. Biochronological comparisons with other sites in eastern Africa suggest that the taxa recovered from the Maka'amitalu are broadly consistent with the reported age of the BKT-3 tuff. Considering the age of BKT-3 and biochronology, a range of 2.4-1.9 Ma is most likely for the faunal assemblage.


Sujet(s)
Hominidae , Proboscidea (mammifère) , Theropithecus , Bovins , Animaux , Suidae , Éthiopie , Environnement , Fossiles , Mammifères , Perissodactyla
8.
Proc Natl Acad Sci U S A ; 119(16): e2107393119, 2022 04 19.
Article de Anglais | MEDLINE | ID: mdl-35412903

RÉSUMÉ

Understanding the climatic drivers of environmental variability (EV) during the Plio-Pleistocene and EV's influence on mammalian macroevolution are two outstanding foci of research in African paleoclimatology and evolutionary biology. The potential effects of EV are especially relevant for testing the variability selection hypothesis, which predicts a positive relationship between EV and speciation and extinction rates in fossil mammals. Addressing these questions is stymied, however, by 1) a lack of multiple comparable EV records of sufficient temporal resolution and duration, and 2) the incompleteness of the mammalian fossil record. Here, we first compile a composite history of Pan-African EV spanning the Plio-Pleistocene, which allows us to explore which climatic variables influenced EV. We find that EV exhibits 1) a long-term trend of increasing variability since ∼3.7 Ma, coincident with rising variability in global ice volume and sea surface temperatures around Africa, and 2) a 400-ky frequency correlated with seasonal insolation variability. We then estimate speciation and extinction rates for fossil mammals from eastern Africa using a method that accounts for sampling variation. We find no statistically significant relationship between EV and estimated speciation or extinction rates across multiple spatial scales. These findings are inconsistent with the variability selection hypothesis as applied to macroevolutionary processes.


Sujet(s)
Évolution biologique , Climat , Extinction biologique , Spéciation génétique , Hominidae , Afrique , Animaux , Fossiles , Hominidae/génétique
10.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article de Anglais | MEDLINE | ID: mdl-35074877

RÉSUMÉ

The appearance of Homo erectus shortly after 2.0 Ma is widely considered a turning point in human dietary evolution, with increased consumption of animal tissues driving the evolution of larger brain and body size and a reorganization of the gut. An increase in the size and number of zooarchaeological assemblages after the appearance of H. erectus is often offered as a central piece of archaeological evidence for increased carnivory in this species, but this characterization has yet to be subject to detailed scrutiny. Any widespread dietary shift leading to the acquisition of key traits in H. erectus should be persistent in the zooarchaeological record through time and can only be convincingly demonstrated by a broad-scale analysis that transcends individual sites or localities. Here, we present a quantitative synthesis of the zooarchaeological record of eastern Africa from 2.6 to 1.2 Ma. We show that several proxies for the prevalence of hominin carnivory are all strongly related to how well the fossil record has been sampled, which constrains the zooarchaeological visibility of hominin carnivory. When correcting for sampling effort, there is no sustained increase in the amount of evidence for hominin carnivory between 2.6 and 1.2 Ma. Our observations undercut evolutionary narratives linking anatomical and behavioral traits to increased meat consumption in H. erectus, suggesting that other factors are likely responsible for the appearance of its human-like traits.


Sujet(s)
Mensurations corporelles/physiologie , Carnivorisme/physiologie , Archéologie/méthodes , Évolution biologique , Encéphale/physiologie , Régime alimentaire/méthodes , Fossiles , Humains
13.
Trends Ecol Evol ; 36(9): 797-807, 2021 09.
Article de Anglais | MEDLINE | ID: mdl-34059368

RÉSUMÉ

A central goal of paleoanthropology is understanding the role of ecological change in hominin evolution. Over the past several decades researchers have expanded the hominin fossil record and assembled detailed late Cenozoic paleoclimatic, paleoenvironmental, and paleoecological archives. However, effective use of these data is precluded by the limitations of pattern-matching strategies for inferring causal relationships between ecological and evolutionary change. We examine several obstacles that have hindered progress, and highlight recent research that is addressing them by (i) confronting an incomplete fossil record, (ii) contending with datasets spanning varied spatiotemporal scales, and (iii) using theoretical frameworks to build stronger inferences. Expanding on this work promises to transform challenges into opportunities and set the stage for a new phase of paleoanthropological research.


Sujet(s)
Hominidae , Animaux , Évolution biologique , Fossiles , Hominidae/génétique
14.
Nat Ecol Evol ; 5(7): 995-1002, 2021 07.
Article de Anglais | MEDLINE | ID: mdl-33941906

RÉSUMÉ

Analysis of enamel stable carbon isotopes (δ13Cenamel) of fossil herbivores is an important tool for making inferences about Plio-Pleistocene vegetation structure in Africa and the environmental context of hominin evolution. Many palaeoecological studies implicitly or explicitly assume that individual variation in C3-C4 plant consumption among fossil herbivores directly reflects the abundance of C3 (trees, shrubs) or C4 (low-altitude tropical grasses) vegetation. However, a strong link between δ13Cenamel of herbivores and ecosystem vegetation structure has not been rigorously established. Here we combine δ13Cenamel data from a large dataset (n = 1,643) with multidecadal Landsat estimates of C3 woody cover across 30 African ecosystems to show that there is little relationship between intrataxonomic variation in δ13Cenamel and vegetation structure. This is especially true when removing forested ecosystems (>80% woody cover)-which numerous lines of evidence suggest are rare in the Plio-Pleistocene fossil record of eastern Africa-from our analyses. Our findings stand in contrast with the common assumption that variation in herbivore δ13Cenamel values reflects changes in the relative abundance of C3-C4 vegetation. We conclude that analyses using herbivore δ13Cenamel data to shed light on the environmental context of hominin evolution should look to explicitly community-level approaches for making vegetation inferences.


Sujet(s)
Écosystème , Herbivorie , Afrique , Afrique de l'Est , Forêts
15.
Sci Data ; 8(1): 17, 2021 01 20.
Article de Anglais | MEDLINE | ID: mdl-33473149

RÉSUMÉ

Prehistoric and recent extinctions of large-bodied terrestrial herbivores had significant and lasting impacts on Earth's ecosystems due to the loss of their distinct trait combinations. The world's surviving large-bodied avian and mammalian herbivores remain among the most threatened taxa. As such, a greater understanding of the ecological impacts of large herbivore losses is increasingly important. However, comprehensive and ecologically-relevant trait datasets for extinct and extant herbivores are lacking. Here, we present HerbiTraits, a comprehensive functional trait dataset for all late Quaternary terrestrial avian and mammalian herbivores ≥10 kg (545 species). HerbiTraits includes key traits that influence how herbivores interact with ecosystems, namely body mass, diet, fermentation type, habitat use, and limb morphology. Trait data were compiled from 557 sources and comprise the best available knowledge on late Quaternary large-bodied herbivores. HerbiTraits provides a tool for the analysis of herbivore functional diversity both past and present and its effects on Earth's ecosystems.


Sujet(s)
Oiseaux , Herbivorie , Mammifères , Animaux , Écosystème
16.
Metab Eng Commun ; 11: e00139, 2020 Dec.
Article de Anglais | MEDLINE | ID: mdl-32775199

RÉSUMÉ

The development of Pseudomonas strains for industrial production of fuels and chemicals will require the integration of heterologous genes and pathways into the chromosome. Finding the most appropriate integration site to maximize strain performance is an essential part of the strain design process. We characterized seven chromosomal loci in Pseudomonas putida KT2440 for integration of a fluorescent protein expression construct. Insertion in five of the loci did not affect growth rate, but fluorescence varied by up to 27-fold. Three sites displaying a diversity of phenotypes with the fluorescent reporter were also chosen for the integration of a gene encoding a muconate importer. Depending on the integration locus, expression of the importer varied by approximately 3-fold and produced significant phenotypic differences. This work demonstrates the impact of the integration location on host viability, gene expression, and overall strain performance.

17.
Proc Natl Acad Sci U S A ; 117(14): 7871-7878, 2020 04 07.
Article de Anglais | MEDLINE | ID: mdl-32205427

RÉSUMÉ

Large-bodied mammalian herbivores dominated Earth's terrestrial ecosystems for several million years before undergoing substantial extinctions and declines during the Late Pleistocene (LP) due to prehistoric human impacts. The decline of large herbivores led to widespread ecological changes due to the loss of their ecological functions, as driven by their unique combinations of traits. However, recently, humans have significantly increased herbivore species richness through introductions in many parts of the world, potentially counteracting LP losses. Here, we assessed the extent to which introduced herbivore species restore lost-or contribute novel-functions relative to preextinction LP assemblages. We constructed multidimensional trait spaces using a trait database for all extant and extinct mammalian herbivores ≥10 kg known from the earliest LP (∼130,000 ybp) to the present day. Extinction-driven contractions of LP trait space have been offset through introductions by ∼39% globally. Analysis of trait space overlap reveals that assemblages with introduced species are overall more similar to those of the LP than native-only assemblages. This is because 64% of introduced species are more similar to extinct rather than extant species within their respective continents. Many introduced herbivores restore trait combinations that have the capacity to influence ecosystem processes, such as wildfire and shrub expansion in drylands. Although introduced species have long been a source of contention, our findings indicate that they may, in part, restore ecological functions reflective of the past several million years before widespread human-driven extinctions.


Sujet(s)
Évolution biologique , Herbivorie/génétique , Espèce introduite , Mammifères/génétique , Animaux , Biodiversité , Écosystème , Extinction biologique , Herbivorie/physiologie , Humains
19.
Philos Trans R Soc Lond B Biol Sci ; 375(1794): 20190125, 2020 03 16.
Article de Anglais | MEDLINE | ID: mdl-31983340

RÉSUMÉ

Large-bodied mammalian herbivores can influence processes that exacerbate or mitigate climate change. Herbivore impacts are, in turn, influenced by predators that place top-down forcing on prey species within a given body size range. Here, we explore how the functional composition of terrestrial large-herbivore and -carnivore guilds varies between three mammal distribution scenarios: Present-Natural, Current-Day and Extant-Native Trophic (ENT) Rewilding. Considering the effects of herbivore species weakly influenced by top-down forcing, we quantify the relative influence keystone large-herbivore guilds have on methane emissions, woody vegetation expansion, fire dynamics, large-seed dispersal, and nitrogen and phosphorus transport potential. We find strong regional differences in the number of herbivores under weak top-down regulation between our three scenarios, with important implications for how they will influence climate change relevant processes. Under the Present-Natural non-ruminant, megaherbivore, browsers were a particularly important guild across much of the world. Megaherbivore extinction and range contraction and the arrival of livestock mean large, ruminant, grazers have become more dominant. ENT Rewilding can restore the Afrotropics and the Indo-Malay realm to the Present-Natural benchmark, but causes top-down forcing of the largest herbivores to become commonplace elsewhere. ENT Rewilding will reduce methane emissions, but does not maximize natural climate solution potential. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.


Sujet(s)
Biodiversité , Changement climatique , Conservation des ressources naturelles/méthodes , Écosystème , Animaux , Mammifères/physiologie
20.
Proc Natl Acad Sci U S A ; 117(3): 1559-1565, 2020 01 21.
Article de Anglais | MEDLINE | ID: mdl-31843924

RÉSUMÉ

Studies of the factors governing global patterns of biodiversity are key to predicting community responses to ongoing and future abiotic and biotic changes. Although most research has focused on present-day climate, a growing body of evidence indicates that modern ecological communities may be significantly shaped by paleoclimatic change and past anthropogenic factors. However, the generality of this pattern is unknown, as global analyses are lacking. Here we quantify the phylogenetic and functional trait structure of 515 tropical and subtropical large mammal communities and predict their structure from past and present climatic and anthropogenic factors. We find that the effects of Quaternary paleoclimatic change are strongest in the Afrotropics, with communities in the Indomalayan realm showing mixed effects of modern climate and paleoclimate. Malagasy communities are poorly predicted by any single factor, likely due to the atypical history of the island compared with continental regions. Neotropical communities are mainly codetermined by modern climate and prehistoric and historical human impacts. Overall, our results indicate that the factors governing tropical and subtropical mammalian biodiversity are complex, with the importance of past and present factors varying based on the divergent histories of the world's biogeographic realms and their native biotas. Consideration of the evolutionary and ecological legacies of both the recent and ancient past are key to understanding the forces shaping global patterns of present-day biodiversity and its response to ongoing and future abiotic and biotic changes in the 21st century.


Sujet(s)
Biodiversité , Évolution biologique , Mammifères , Phylogéographie , Animaux , Climat , Écologie , Écosystème , Humains , Phylogenèse , Climat tropical
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE