Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 45
Filtrer
1.
Chemphyschem ; : e202400533, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38925604

RÉSUMÉ

The major impediment in realizing a carbon-neutral hydrogen fuel economy is the cost and inadequacy of contemporary electrochemical water splitting approaches towards the energy intensive oxygen evolution reaction (OER). The O-O bond formation in the water oxidation half-cell reaction is both kinetically and thermodynamically challenging and amplifies the overpotential requirement in most of the active water oxidation catalysts. Herein, density functional theory is employed to interrogate 20 Ni(II) complexes, out of which 17 are in silico designed molecular water oxidation catalysts, coordinated to electron-rich tetra-anionic redox non-innocent phenylenebis(oxamidate) and dibenzo-1,4,7,10-tetraazacyclododecane-2,3,8,9-tetraone parent ligands and their structural analogues, and identify the role of substituent changes or ligand effects in the order of their reactivity. Importantly, our computational mechanistic analyses predict that the activation free energy of the rate-determining O-O bond formation step obeys an inverse scaling relationship with the global electrophilicity index of the intermediate generated on two-electron oxidation of the starting complex. Additionally, the driving force is directly correlated with this OER descriptor which enables two-dimensional volcano representation and thereby extrapolation towards the ideal substitution with the chosen ligand. Our study, therefore, establish fundamental insights to overcome the imperative overpotential issue with simple and precise computational rationalization preceding experimental validation.

3.
Chem Commun (Camb) ; 60(35): 4727-4730, 2024 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-38597372

RÉSUMÉ

An efficient Rh(II)-catalyzed highly selective N2-arylation of benzotriazole, indazole, and 1,2,3 triazole is developed using diazonaphthoquinone. The developed protocol is extended with a wide scope. In addition, late-stage arylation of these scaffolds tethered with bioactive molecules is explored. Control experiments and DFT calculations reveal that the reaction proceeds presumably via nucleophilic addition of the N2 (of the 1H tautomer) center to quinoid-carbene followed by a 1,5-H shift.

4.
Chem Commun (Camb) ; 60(30): 4056-4059, 2024 Apr 09.
Article de Anglais | MEDLINE | ID: mdl-38505958

RÉSUMÉ

Designing well-defined Zn-complexes for sustainable dehydrogenative catalysis overcoming the difficulties associated with activating Zn2+(d10)-metal species is considered paramount goal in catalysis. Herein, we explore the plausibility of ß-alkylation of secondary alcohols with primary alcohols by well-defined 3d10 Zn-complexes. Detailed organometallic and catalytic investigations, in conjunction with computational analyses, were conducted to ascertain the potential involvement of the catalyst at various stages of the catalytic process.

5.
ACS Omega ; 9(9): 9886-9920, 2024 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-38463281

RÉSUMÉ

Increased demand for a carbon-neutral sustainable energy scheme augmented by climatic threats motivates the design and exploration of novel approaches that reserve intermittent solar energy in the form of chemical bonds in molecules and materials. In this context, inspired by biological processes, artificial photosynthesis has garnered significant attention as a promising solution to convert solar power into chemical fuels from abundantly found H2O. Among the two redox half-reactions in artificial photosynthesis, the four-electron oxidation of water according to 2H2O → O2 + 4H+ + 4e- comprises the major bottleneck and is a severe impediment toward sustainable energy production. As such, devising new catalytic platforms, with traditional concepts of molecular, materials and biological catalysis and capable of integrating the functional architectures of the natural oxygen-evolving complex in photosystem II would certainly be a value-addition toward this objective. In this review, we discuss the progress in construction of ideal water oxidation catalysts (WOCs), starting with the ingenuity of the biological design with earth-abundant transition metal ions, which then diverges into molecular, supramolecular and hybrid approaches, blurring any existing chemical or conceptual boundaries. We focus on the geometric, electronic, and mechanistic understanding of state-of-the-art homogeneous transition-metal containing molecular WOCs and summarize the limiting factors such as choice of ligands and predominance of environmentally unrewarding and expensive noble-metals, necessity of high-valency on metal, thermodynamic instability of intermediates, and reversibility of reactions that create challenges in construction of robust and efficient water oxidation catalyst. We highlight how judicious heterogenization of atom-efficient molecular WOCs in supramolecular and hybrid approaches put forth promising avenues to alleviate the existing problems in molecular catalysis, albeit retaining their fascinating intrinsic reactivities. Taken together, our overview is expected to provide guiding principles on opportunities, challenges, and crucial factors for designing novel water oxidation catalysts based on a synergy between conventional and contemporary methodologies that will incite the expansion of the domain of artificial photosynthesis.

6.
Chemistry ; 30(20): e202304002, 2024 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-38290995

RÉSUMÉ

A divergent synthetic approach to access highly substituted indole scaffolds is illustrated. By virtue of a tunable electrochemical strategy, distinct control over the C-3 substitution pattern was achieved by employing two analogous 2-styrylaniline precursors. The chemoselectivity is governed by the fine-tuning of the acidity of the amide proton, relying on the appropriate selection of N-protecting groups, and assisted by the reactivity of the electrogenerated intermediates. Detailed mechanistic investigations based on cyclic voltametric experiments and computational studies revealed the crucial role of water additive, which assists the proton-coupled electron transfer event for highly acidic amide precursors, followed by an energetically favorable intramolecular C-N coupling, causing exclusive fabrication of the C-3 unsubstituted indoles. Alternatively, the implementation of an electrogenerated cationic olefin activator delivers the C-3 substituted indoles through the preferential nucleophilic nature of the N-acyl amides. This electrochemical approach of judicious selection of N-protecting groups to regulate pKa/E° provides an expansion in the domain of switchable generation of heterocyclic derivatives in a sustainable fashion, with high regio- and chemoselectivity.

7.
Chemistry ; 30(8): e202303776, 2024 Feb 07.
Article de Anglais | MEDLINE | ID: mdl-38055713

RÉSUMÉ

We report the Cu(II) catalyzed synthesis of ß-disubstituted ketones from styrene via oxo-alkylation with unactivated cycloalkanes as the alkylating agent in presence of tert-butylhydroperoxide (TBHP) and 1-methylimidazole as oxidant and base respectively. ß-disubstituted ketones are known to be synthesized by using either expensive Ru/Ir complexes, or low-cost metal complexes (e. g., Fe, Mn) with activated species like aldehyde, acid, alcohol, or phthalimide derivatives as the alkylating agent, however, use of unactivated cycloalkanes directly as the alkylating agent remains challenging. A wide range of aliphatic C-H substrates as well as various olefinic arenes and heteroarene (35 substrates including 14 new substrates) are well-tolerated in this method. Hammett analysis shed more light on the substitution effect in the olefinic part on the overall mechanism. Furthermore, the controlled experiments, kinetic isotope effect study, and theoretical calculations (DFT) enable us to gain deeper insight of mechanistic intricacies of this new simple and atom-economic methodology.

9.
Org Lett ; 25(46): 8290-8295, 2023 Nov 24.
Article de Anglais | MEDLINE | ID: mdl-37962249

RÉSUMÉ

We report a photoredox system comprising sodium iodide, triphenyl phosphine, and N,N,N',N'-tetramethylethylenediamine (TMEDA) that can form a self-assembled tetrameric electron donor-acceptor (EDA) complex with diaryliodonium reagents (DAIRs) and furnish aryl radicals upon visible light irradiation. This practical mode of activation of DAIRs enables arylation of an array of heterocycles under mild conditions to provide the respective heteroaryl-(hetero)aryl assembly in moderate to excellent yields. Detailed mechanistic investigations comprising photophysical and DFT studies provided insight into the reaction mechanism.

10.
Chem Sci ; 14(39): 10768-10776, 2023 Oct 11.
Article de Anglais | MEDLINE | ID: mdl-37829006

RÉSUMÉ

An important objective in organic synthesis and medicinal chemistry is the capacity to access structurally varied and complex molecules rapidly and affordably from easily available starting materials. Herein, a protocol for the structurally divergent synthesis of benzofuran fused azocine derivatives and spiro-cyclopentanone benzofurans has been developed via chiral bifunctional urea catalyzed reaction between aurone-derived α,ß-unsaturated imine and ynone followed by switchable divergent annulation reactions by Lewis base catalysts (DBU and PPh3) with concomitant epimerization. The skeletally diversified products were formed in high yields with high diastereo- and enantioselectivities. Computational analysis with DFT and accurate DLPNO-CCSD(T) has been employed to gain deeper insights into mechanistic intricacies and investigate the role of chiral and Lewis base catalysts in skeletal diversity.

11.
J Phys Chem B ; 127(21): 4808-4819, 2023 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-37196104

RÉSUMÉ

In this work, 1,8-naphthalimide (NMI)-conjugated three hybrid dipeptides constituted of a ß-amino acid and an α-amino acid have been designed, synthesized, and purified. Here, in the design, the chirality of the α-amino acid was varied to study the effect of molecular chirality on the supramolecular assembly. Self-assembly and gelation of three NMI conjugates were studied in mixed solvent systems [water and dimethyl sulphoxide (DMSO)]. Interestingly, chiral NMI derivatives [NMI-ßAla-lVal-OMe (NLV) and NMI-ßAla-dVal-OMe (NDV)] formed self-supported gels, while the achiral NMI derivative [NMI-ßAla-Aib-OMe, (NAA)] failed to form any kind of gel at 1 mM concentration and in a mixed solvent (70% water in DMSO medium). Self-assembly processes were thoroughly investigated using UV-vis spectroscopy, nuclear magnetic resonance (NMR), fluorescence, and circular dichroism (CD) spectroscopy. A J-type molecular assembly was observed in the mixed solvent system. The CD study indicated the formation of chiral assembled structures for NLV and NDV, which were mirror images of one another, and the self-assembled state by NAA was CD-silent. The nanoscale morphology of the three derivatives was studied using scanning electron microscopy (SEM). In the case of NLV and NDV, left- and right-handed fibrilar morphologies were observed, respectively. In contrast, a flake-like morphology was noticed for NAA. The DFT study indicated that the chirality of the α-amino acid influenced the orientation of π-π stacking interactions of naphthalimide units in the self-assembled structure that in turn regulated the helicity. This is a unique work where molecular chirality controls the nanoscale assembly as well as the macroscopic self-assembled state.

12.
Org Lett ; 25(20): 3739-3744, 2023 May 26.
Article de Anglais | MEDLINE | ID: mdl-37184284

RÉSUMÉ

We disclose a transition-metal-free NaI/PPh3-mediated direct C-H alkylation of azauracils using N-(acyloxy)pthalimides (NHPIs) as readily available alkyl surrogates under visible light irradiation. Detailed mechanistic studies reveal formation of a photoactivated electron donor-acceptor (EDA) complex between NaI/PPh3, TMEDA, and alkyl NHPI ester and establish the crucial role of TMEDA in increasing the activity of the photoredox system. The reaction demonstrates a broad scope, scalability, and appreciable functional group tolerance. A variety of azauracils are shown to undergo alkylation by primary, secondary, and tertiary NHPI esters under mild conditions, furnishing the desired products in good to excellent yields.

13.
Org Lett ; 25(11): 1952-1957, 2023 Mar 24.
Article de Anglais | MEDLINE | ID: mdl-36896989

RÉSUMÉ

A Pd(II)-catalyzed straightforward oxidative naphthylation of unmasked 2-pyridone derivatives is described using a twofold internal alkyne as a coupling partner. The reaction proceeds through N-H/C-H activation to provide polyarylated N-naphthyl 2-pyridones. An unusual oxidative annulation at the arene C-H bond of the diarylalkyne leads to the formation of polyarylated N-naphthyl 2-pyridones, where the 2-pyridone-attached phenyl ring of the naphthyl ring is polyaryl-substituted. Mechanistic studies and DFT calculations suggest a plausible mechanism based on N-H/C-H activation. The N-naphthyl 2-pyridone derivatives were studied to explore encouraging photophysical properties.

14.
Chem Commun (Camb) ; 59(30): 4463-4466, 2023 Apr 11.
Article de Anglais | MEDLINE | ID: mdl-36952223

RÉSUMÉ

Molecules with solid state luminescence and mechanochromic luminescence properties have attracted immense interest owing to their potential application in the areas of organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs), optoelectronic devices, fluorescence switches, mechano-sensors and data storage. Herein we report a convenient two step synthetic protocol to obtain a couple of luminescent molecules. Using these, a comparative study has been performed to showcase the importance of the weak π⋯π interactions to observe the aggregation induced emission (AIE) and solid-state mechanochromic luminescence. The most fascinating part of this report is to observe the switchable fluorescent dark and bright states of the solid AIEgen. We have also demonstrated the use of the AIEgen to detect volatile organic compounds.

15.
J Am Chem Soc ; 145(9): 5270-5284, 2023 Mar 08.
Article de Anglais | MEDLINE | ID: mdl-36797682

RÉSUMÉ

This study unravels the intricate kinetic and thermodynamic pathways involved in the supramolecular copolymerization of the two chiral dipolar naphthalene monoimide (NMI) building blocks (O-NMI and S-NMI), differing merely by a single heteroatom (oxygen vs sulfur). O-NMI exhibits distinct supramolecular polymerization features as compared to S-NMI in terms of its pathway complexity, hierarchical organization, and chiroptical properties. Two distinct self-assembly pathways in O-NMI occur due to the interplay between the competing dipolar interactions among the NMI chromophores and amide-amide hydrogen (H)-bonding that engenders distinct nanotapes and helical fibers, from its antiparallel and parallel stacking modes, respectively. In contrast, the propensity of S-NMI to form only a stable spherical assembly is ascribed to its much stronger amide-amide H-bonding, which outperforms other competing interactions. Under the thermodynamic route, an equimolar mixture of the two monomers generates a temporally controlled chiral statistical supramolecular copolymer that autocatalytically evolves from an initially formed metastable spherical heterostructure. In contrast, the sequence-controlled addition of the two monomers leads to the kinetically driven hetero-seeded block copolymerization. The ability to trap O-NMI in a metastable state allows its secondary nucleation from the surface of the thermodynamically stable S-NMI spherical "seed", which leads to the core-multiarmed "star" copolymer with reversibly and temporally controllable length of the growing O-NMI "arms" from the S-NMI "core". Unlike the one-dimensional self-assembly of O-NMI and its random co-assembly with S-NMI, which are both chiral, unprecedentedly, the preferred helical bias of the nucleating O-NMI fibers is completely inhibited by the absence of stereoregularity of the S-NMI "seed" in the "star" topology.

16.
J Org Chem ; 88(4): 2543-2549, 2023 Feb 17.
Article de Anglais | MEDLINE | ID: mdl-36749678

RÉSUMÉ

We conceptualized a novel disconnection approach for the synthesis of fused tetrahydroquinolines that exploits a visible light-mediated radical (4 + 2) annulation between alkyl N-(acyloxy)phthalimides and N-substituted maleimides in the presence of DIPEA as an additive. The reaction proceeds through the formation of a photoactivated electron donor-acceptor complex between alkyl NHPI esters and DIPEA, and the final tetrahydroquinolines were obtained in a complete regioselective fashion. The methodology features a broad scope and good functional group tolerance and operates under metal- and catalyst-free reaction conditions. Detailed mechanistic investigations including density functional theory studies provide insight into the reaction pathway.

17.
J Org Chem ; 88(2): 771-787, 2023 Jan 20.
Article de Anglais | MEDLINE | ID: mdl-36577023

RÉSUMÉ

We report a sustainable and eco-friendly approach for selective N-alkylation of various amines by alcohols, catalyzed by a well-defined Zn(II)-catalyst, Zn(La)Cl2 (1a), bearing a tridentate arylazo scaffold. A total of 57 N-alkylated amines were prepared in good to excellent yields, out of which 17 examples are new. The Zn(II)-catalyst shows wide functional group tolerance, is compatible with the synthesis of dialkylated amines via double N-alkylation of diamines, and produces the precursors in high yields for the marketed drugs tripelennamine and thonzonium bromide in gram-scale reactions. Control reactions and DFT studies indicate that electron transfer events occur at the azo-chromophore throughout the catalytic process, which shuttles between neutral azo, one-electron reduced azo-anion radical, and two-electron reduced hydrazo forms acting both as electron and hydrogen reservoir, enabling the Zn(II)-catalyst for N-alkylation reaction.

18.
J Phys Chem B ; 126(51): 10882-10892, 2022 12 29.
Article de Anglais | MEDLINE | ID: mdl-36516185

RÉSUMÉ

Helical supramolecular architectures play important structural and functional roles in biological systems. The helicity of synthetic molecules can be tuned mainly by the chiral manipulation of the system. However, tuning of helicity by the achiral unit of the molecules is less studied. In this work, the helicity of naphthalimide-capped peptide-based gel nanofibers is tuned by the alteration of methylene units present in the achiral amino acid. The inversion of supramolecular helicity has been extensively studied by CD spectroscopy and morphological analysis. The density functional theory (DFT) study indicates that methylene spacers influence the orientation of π-π stacking interactions of naphthalimide units in the self-assembled structure that regulates the helicity. This work illustrates a new approach to tuning the supramolecular chirality of self-assembled biomaterials.


Sujet(s)
Nanofibres , Nanofibres/composition chimique , Dérivés de la benzo[de]isoquinoléine-1,3-dione , Peptides/composition chimique , Acides aminés , Dichroïsme circulaire
19.
Org Lett ; 24(49): 9001-9006, 2022 Dec 16.
Article de Anglais | MEDLINE | ID: mdl-36469513

RÉSUMÉ

Benzoperylenocarbazole (BPC), a unique carbazole-based organophotocatalyst, is reported herein as a potent organo-photoreductant. Lower excited state oxidation potential (-2.0 V vs SCE) and reasonable excited state lifetime (4.61 ns) render BPC an effective photosensitizer. Under irradiation of blue light employing low catalyst loading (0.5 mol %), a plethora of vicinal diols and diamines were synthesized in excellent yields through reductive coupling of carbonyls and imines, respectively. Insight about the electronic structure of BPC was obtained by DFT calculations.

20.
Chem Sci ; 13(8): 2355-2362, 2022 Feb 23.
Article de Anglais | MEDLINE | ID: mdl-35310508

RÉSUMÉ

A diastereoselective allylation of N-tert-butane sulfinyl α-iminoesters using allylboronic acids is developed to obtain optically active non-proteinogenic α-amino acid precursors in good yields and diastereoselectivities. Gram-scale synthesis, broad tolerance of functional groups, excellent stereodivergence, post-synthetic modifications, and easy removal of the chiral auxiliary are some of the key highlights. The protocol is applicable to various amino acids and short peptides, resulting in the incorporation of these precursors at the N-terminal position.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...