Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Materials (Basel) ; 15(24)2022 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-36556778

RÉSUMÉ

In this work, the Generalized Hubbard Model on a square lattice is applied to evaluate the electrical current density of high critical temperature d-wave superconductors with a set of Hamiltonian parameters allowing them to reach critical temperatures close to 100 K. The appropriate set of Hamiltonian parameters permits us to apply our model to real materials, finding a good quantitative fit with important macroscopic superconducting properties such as the critical superconducting temperature (Tc) and the critical current density (Jc). We propose that much as in a dispersive medium, in which the velocity of electrons can be estimated by the gradient of the dispersion relation ∇ε(k), the electron velocity is proportional to ∇E(k) in the superconducting state (where E(k)=(ε(k)-µ)2+Δ2(k) is the dispersion relation of the quasiparticles, and k is the electron wave vector). This considers the change of ε(k) with respect to the chemical potential (µ) and the formation of pairs that gives rise to an excitation energy gap Δ(k) in the electron density of states across the Fermi level. When ε(k)=µ at the Fermi surface (FS), only the term for the energy gap remains, whose magnitude reflects the strength of the pairing interaction. Under these conditions, we have found that the d-wave symmetry of the pairing interaction leads to a maximum critical current density in the vicinity of the antinodal k-space direction (π,0) of approximately 1.407236×108 A/cm2, with a much greater current density along the nodal direction (π2,π2) of 2.214702×109 A/cm2. These results allow for the establishment of a maximum limit for the critical current density that could be attained by a d-wave superconductor.

2.
Materials (Basel) ; 14(20)2021 Oct 19.
Article de Anglais | MEDLINE | ID: mdl-34683795

RÉSUMÉ

Improving our understanding of the physical coupling between type-II superconductors (SC) and soft ferromagnetic materials (SFM) is the root for progressing to the application of SC-SFM metastructures in scenarios such as magnetic cloaking, magnetic shielding, and power transmission systems. However, in the latter, some intriguing and yet unexplained phenomena occurred, such as a noticeable rise in the SC energy losses, and a local but not isotropic deformation of its magnetic flux density. These phenomena, which are in apparent contradiction with the most fundamental theory of electromagnetism for superconductivity, that is, the critical state theory (CST), have remained unexplained for about 20 years, given the acceptance of the controversial and yet paradigmatic existence of the so-called overcritical current densities. Therefore, aiming to resolve these long-standing problems, we extended the CST by incorporating a semi-analytical model for cylindrical monocore SC-SFM heterostructures, setting the standards for its validation with a variational approach of multipole functionals for the magnetic coupling between Sc and SFM materials. It is accompanied by a comprehensive numerical study for SFM sheaths of arbitrary dimensions and magnetic relative permeabilities µr, ranging from µr=5 (NiZn ferrites) to µr = 350,000 (pure Iron), showing how the AC-losses of the SC-SFM metastructure radically changes as a function of the SC and the SFM radius for µr≥100. Our numerical technique and simulations also revealed a good qualitative agreement with the magneto optical imaging observations that were questioning the CST validness, proving therefore that the reported phenomena for self-field SC-SFM heterostructures can be understood without including the ansatz of overcritical currents.

3.
Sci Rep ; 8(1): 1342, 2018 01 22.
Article de Anglais | MEDLINE | ID: mdl-29358743

RÉSUMÉ

The extremely low decay factor on the trapped magnetic field by stacks of second-generation high-temperature superconducting tapes reported in Appl. Phys. Lett. 104, 232602 (2014), is in apparent contradiction with the classical results for the demagnetization of superconducting bulks and thin films, where the samples undergo a severe and progressive decay under crossed magnetic field conditions. Nevertheless, in this paper, we demonstrate how the theoretical approaches and experimental measurements on superconducting bulks, thin films, and stacks of superconducting tapes can be reconciled, not only under the crossed field configuration but also under rotating magnetic field conditions, by showing that the stacks of commercial tapes behave as a system of electrically unconnected layers preventing the deformation of profiles of current along its external contour. This study extends up to the consideration of using novel superconducting/ferromagnetic metastructures, where soft ferromagnetic films are interlayered, reporting a further reduction on the magnetization decay of about 50% in the crossed field configuration. Remarkably, after applying the same number of cycles either of rotating or crossed magnetic field to these metastructures, the difference between the magnetization decay is found to be negligible, what demonstrates their highly superior performance when compared to conventional stacks of superconducting tapes.

4.
Springerplus ; 5(1): 1972, 2016.
Article de Anglais | MEDLINE | ID: mdl-27900238

RÉSUMÉ

Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the current density, characteristic of high temperature superconductors. Our results are compared to the step-resistance models for the sake of discussion and clarity of the conclusions. Both SFCL models were integrated into a power system model built based on the UK power standard, to study the impact of these protection strategies on the performance of the overall electricity network. As a representative renewable energy source, a 90 MVA wind farm was considered for the simulations. Three fault conditions were simulated, and the figures for the fault current reduction predicted by both fault current limiting models have been compared in terms of multiple current measuring points and allocation strategies. Consequently, we have shown that the incorporation of the E-J characteristics and thermal properties of the superconductor at the simulation level of electric power systems, is crucial for estimations of reliability and determining the optimal locations of resistive type SFCLs in distributed power networks. Our results may help decision making by distribution network operators regarding investment and promotion of SFCL technologies, as it is possible to determine the maximum number of SFCLs necessary to protect against different fault conditions at multiple locations.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...