Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Molecules ; 28(23)2023 Nov 24.
Article de Anglais | MEDLINE | ID: mdl-38067479

RÉSUMÉ

Plant-based materials are an important source of bioactive compounds (BC) with interesting industrial applications. Therefore, adequate experimental strategies for maximizing their recovery yield are required. Among all procedures for extracting BC (maceration, Soxhlet, hydro-distillation, pulsed-electric field, enzyme, microwave, high hydrostatic pressure, and supercritical fluids), the ultrasound-assisted extraction (UAE) highlighted as an advanced, cost-efficient, eco-friendly, and sustainable alternative for recovering BC (polyphenols, flavonoids, anthocyanins, and carotenoids) from plant sources with higher yields. However, the UAE efficiency is influenced by several factors, including operational variables and extraction process (frequency, amplitude, ultrasonic power, pulse cycle, type of solvent, extraction time, solvent-to-solid ratio, pH, particle size, and temperature) that exert an impact on the molecular structures of targeted molecules, leading to variations in their biological properties. In this context, a diverse design of experiments (DOEs), including full or fractional factorial, Plackett-Burman, Box-Behnken, Central composite, Taguchi, Mixture, D-optimal, and Doehlert have been investigated alone and in combination to optimize the UAE of BC from plant-based materials, using the response surface methodology and mathematical models in a simple or multi-factorial/multi-response approach. The present review summarizes the advantages and limitations of the most common DOEs investigated to optimize the UAE of bioactive compounds from plant-based materials.


Sujet(s)
Anthocyanes , Polyphénols , Flavonoïdes , Extraits de plantes/composition chimique , Solvants/composition chimique
2.
Animals (Basel) ; 13(18)2023 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-37760240

RÉSUMÉ

Probiotic supplementation in dairy cattle has achieved several beneficial effects (improved growth rate, immune response, and adequate ruminal microbiota). This study assessed the effects on the growth parameters and gut microbiota of newborn dairy calves supplemented with two Lactobacillus-based probiotics, individually (6BZ or 6BY) or their combination (6BZ + 6BY), administrated with the same concentration (1 × 109 CFU/kg weight) at three times, between days 5 and 19 after birth. The control group consisted of probiotic-unsupplemented calves. Growth parameters were recorded weekly until eight weeks and at the calves' ages of three, four, and five months. Fecal microbiota was described by high-throughput sequencing and bioinformatics. Although no significant effects were observed regarding daily weight and height gain among probiotic-supplemented and non-supplemented calves, correlation analysis showed that growth rate was maintained until month 5 through probiotic supplementation, mainly when the two-strain probiotics were supplied. Modulation effects on microbiota were observed in probiotic-supplemented calves, improving the Bacteroidota: Firmicutes and the Proteobacteria ratios. Functional prediction by PICRUSt also showed an increment in several pathways when the two-strain probiotic was supplemented. Therefore, using the three-administration scheme, the two-strain probiotic improved the growth rate and gut microbiota profile in newborn dairy calves. However, positive effects could be reached by applying more administrations of the probiotic during the first 20 days of a calf's life.

3.
Plants (Basel) ; 12(8)2023 Apr 17.
Article de Anglais | MEDLINE | ID: mdl-37111891

RÉSUMÉ

Bacteria have been used to increase crop yields. For their application on crops, bacteria are provided in inoculant formulations that are continuously changing, with liquid- and solid-based products. Bacteria for inoculants are mainly selected from natural isolates. In nature, microorganisms that favor plants exhibit various strategies to succeed and prevail in the rhizosphere, such as biological nitrogen fixation, phosphorus solubilization, and siderophore production. On the other hand, plants have strategies to maintain beneficial microorganisms, such as the exudation of chemoattractanst for specific microorganisms and signaling pathways that regulate plant-bacteria interactions. Transcriptomic approaches are helpful in attempting to elucidate plant-microorganism interactions. Here, we present a review of these issues.

4.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 12.
Article de Anglais | MEDLINE | ID: mdl-35455462

RÉSUMÉ

Hibiscus sabdariffa Linn. Malvaceae (HS) is characterized by its edible calyxes. The HS calyxes are widely used for cosmetic, food, and medicinal applications. According to ethnobotanical evidence, decoction, infusion, or maceration extracts from HS calyxes have been used in folk medicine to treat many ailments. Moreover, several in vitro and in vivo studies have demonstrated the pharmacological properties and potential human health benefits of HS consumption. On the other hand, the evaluation of the physiological effects and health benefits of HS in clinical studies is most challenging. Therefore, this narrative review summarizes and discusses the physiological effects and health benefits of HS calyxes reported in clinical trials. Preparations obtained from HS calyxes (extracts, infusions, decoction, teas, beverages, capsules, and pills) are used as non-pharmacological therapies to prevent/control diverse chronic non-communicable diseases. The most-reported HS health benefits are its antihypertensive, antidyslipidemic, hypoglycemic, body fat mass reduction, nephroprotective, antianemic, antioxidant, anti-inflammatory, and anti-xerostomic activities; these effects are associated with the phytochemicals found in HS. Moreover, no adverse effects were reported during the clinical trials. However, clinical studies exhibited some limitations; thus, further studies are required to validate the clinical efficacy of HS in large-scale studies with higher doses and a good experimental design.

5.
Microorganisms ; 10(1)2022 Jan 06.
Article de Anglais | MEDLINE | ID: mdl-35056565

RÉSUMÉ

The poultry industry is constantly demanding novel strategies to improve the productivity and health status of hens, prioritizing those based on the holistic use of natural resources. This study aimed to assess the effects of an Allium-based phytobiotic on productivity, egg quality, and fecal microbiota of laying hens. One hundred and ninety-two 14-week-old Lohmann Lite LSL hens were allocated into an experimental farm, fed with a commercial concentrate with and without the Allium-based phytobiotic, and challenged against Salmonella. Productivity, egg quality, and fecal microbiota were monitored for 20 weeks. Results showed that the phytobiotic caused an increase on the number of eggs laid (p < 0.05) and in the feed conversion rate (p < 0.05); meanwhile, egg quality, expressed as egg weight, albumin height, haugh units, egg shell strength, and egg shell thickness remained unchanged (p > 0.05), although yolk color was decreased. Fecal microbiota structure was also modified, indicating a modulation of the gut microbiota by increasing the presence of Firmicutes and Bacteroidetes but reducing Proteobacteria and Actinobacteria phyla. Predicted changes in the functional profiles of fecal microbiota suggest alterations in metabolic activities that could be responsible for the improvement and maintenance of productivity and egg quality when the phytobiotic was supplemented; thus, Allium-based phytobiotic has a major impact on the performance of laying hens associated with a possible gut microbiota modulation.

6.
Animals (Basel) ; 12(1)2022 Jan 01.
Article de Anglais | MEDLINE | ID: mdl-35011208

RÉSUMÉ

Salmonella spp. is a facultative intracellular pathogen causing localized or systemic infections, involving economic and public health significance, and remains the leading pathogen of food safety concern worldwide, with poultry being the primary transmission vector. Antibiotics have been the main strategy for Salmonella control for many years, which has allowed producers to improve the growth and health of food-producing animals. However, the utilization of antibiotics has been reconsidered since bacterial pathogens have established and shared a variety of antibiotic resistance mechanisms that can quickly increase within microbial communities. The use of alternatives to antibiotics has been recommended and successfully applied in many countries, leading to the core aim of this review, focused on (1) describing the importance of Salmonella infection in poultry and the effects associated with the use of antibiotics for disease control; (2) discussing the use of feeding-based (prebiotics, probiotics, bacterial subproducts, phytobiotics) and non-feeding-based (bacteriophages, in ovo injection, vaccines) strategies in poultry production for Salmonella control; and (3) exploring the use of complementary strategies, highlighting those based on -omics tools, to assess the effects of using the available antibiotic-free alternatives and their role in lowering dependency on the existing antimicrobial substances to manage bacterial infections in poultry effectively.

7.
Materials (Basel) ; 13(4)2020 Feb 11.
Article de Anglais | MEDLINE | ID: mdl-32053948

RÉSUMÉ

In recent years, a strong interest has emerged in hybrid composites and their potential uses, especially in chitosan-titanium dioxide (CS-TiO2) composites, which have interesting technological properties and applications. This review describes the reported advantages and limitations of the functionalization of chitosan by adding TiO2 nanoparticles. Their effects on structural, textural, thermal, optical, mechanical, and vapor barrier properties and their biodegradability are also discussed. Evidence shows that the incorporation of TiO2 onto the CS matrix improves all the above properties in a dose-dependent manner. Nonetheless, the CS-TiO2 composite exhibits great potential applications including antimicrobial activity against bacteria and fungi; UV-barrier properties when it is used for packaging and textile purposes; environmental applications for removal of heavy metal ions and degradation of diverse water pollutants; biomedical applications as a wound-healing material, drug delivery system, or by the development of biosensors. Furthermore, no cytotoxic effects of CS-TiO2 have been reported on different cell lines, which supports their use for food and biomedical applications. Moreover, CS-TiO2 has also been used as an anti-corrosive material. However, the development of suitable protocols for CS-TiO2 composite preparation is mandatory for industrial-scale implementation.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...