Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Entropy (Basel) ; 24(12)2022 Dec 13.
Article de Anglais | MEDLINE | ID: mdl-36554217

RÉSUMÉ

The efficiency of a thermoelectric generator model under maximum conditions is presented for two optimization criteria proposed under the context of finite-time thermodynamics, namely, the efficient power criterion and the Omega function, where this last function represents a trade-off between useful and lost energy. The results are compared with the performance of the device at maximum power output. A macroscopic thermoelectric generator (TEG) model with three possible sources of irreversibilities is considered: (i) the electric resistance R for the Joule heating, (ii) the thermal conductances Kh and Kc of the heat exchangers between the thermal baths and the TEG, and (iii) the internal thermal conductance K for heat leakage. In particular, two configurations of the macroscopic TEG are studied: the so-called exoreversible case and the endoreversible limit. It shows that for both TEG configurations, the efficiency at maximum Omega function is always greater than that obtained in conditions of maximum efficient power, and this in turn is greater than that of the maximum power regime.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(5 Pt 1): 051101, 2010 Nov.
Article de Anglais | MEDLINE | ID: mdl-21230431

RÉSUMÉ

The efficiency of four different and representative models of heat engines under maximum conditions for a figure of merit representing a compromise between useful energy and lost energy (the Ω criterion) is investigated and compared with previous results for the same models where the efficiency is considered at maximum power conditions. It is shown that the maximum Ω regime is more efficient and, additionally, that the resulting efficiencies present a similar behavior. For each performance regime we obtain explicit equations accounting for lower and upper bounds. The optimization of refrigeration devices is far from being as clear as heat engines, and some remarks on it are finally considered.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE