Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 58
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Genes Brain Behav ; 9(8): 899-909, 2010 Nov.
Article de Anglais | MEDLINE | ID: mdl-20662939

RÉSUMÉ

Fast excitatory transmission in the mammalian central nervous system is mediated by AMPA-type glutamate receptors. The tetrameric AMPA receptor complexes are composed of four subunits, GluR1-4. The GluR4 subunit is highly expressed in the cerebellum and the early postnatal hippocampus and is thought to be involved in synaptic plasticity and the development of functional neural circuitry through the recruitment of other AMPA receptor subunits. Previously, we reported an association of the human GluR4 gene (GRIA4) with schizophrenia. To examine the role of the GluR4 subunit in the higher brain function, we generated GluR4 knockout mice and conducted electrophysiological and behavioural analyses. The mutant mice showed normal long-term potentiation (LTP) in the CA1 region of the hippocampus. The GluR4 knockout mice showed mildly improved spatial working memory in the T-maze test. Although the retention of spatial reference memory was intact in the mutant mice, the acquisition of spatial reference memory was impaired in the Barnes circular maze test. The GluR4 knockout mice showed impaired prepulse inhibition. These results suggest the involvement of the GluR4 subunit in cognitive function.


Sujet(s)
Région CA1 de l'hippocampe/métabolisme , Potentialisation à long terme/génétique , Apprentissage du labyrinthe/physiologie , Inhibition nerveuse/génétique , Récepteur de l'AMPA/génétique , Stimulation acoustique , Animaux , Région CA1 de l'hippocampe/effets des médicaments et des substances chimiques , Conditionnement classique/effets des médicaments et des substances chimiques , Conditionnement classique/physiologie , Maléate de dizocilpine/pharmacologie , Antagonistes des acides aminés excitateurs/pharmacologie , Femelle , Techniques in vitro , Inhibition psychologique , Potentialisation à long terme/physiologie , Mâle , Apprentissage du labyrinthe/effets des médicaments et des substances chimiques , Souris , Souris de lignée C57BL , Souris knockout , Inhibition nerveuse/effets des médicaments et des substances chimiques , Inhibition nerveuse/physiologie , Temps de réaction/effets des médicaments et des substances chimiques , Temps de réaction/génétique , Temps de réaction/physiologie , Récepteur de l'AMPA/antagonistes et inhibiteurs , Récepteur de l'AMPA/métabolisme , Réflexe de sursaut/effets des médicaments et des substances chimiques , Réflexe de sursaut/génétique , Réflexe de sursaut/physiologie , Filtrage sensoriel/effets des médicaments et des substances chimiques , Filtrage sensoriel/génétique , Filtrage sensoriel/physiologie
2.
Dev Biol ; 229(1): 250-61, 2001 Jan 01.
Article de Anglais | MEDLINE | ID: mdl-11133168

RÉSUMÉ

Chk1, a nuclear DNA damage/replication G2 checkpoint kinase, phosphorylates Cdc25 and causes its nuclear exclusion in yeast and mammalian cells, thereby arresting the cell at the G2 phase until DNA repair/replication is completed. Chk1 is also involved, at least in part, in the natural G2 arrest of immature Xenopus oocytes, but it is unknown how Chk1 inhibits Cdc25 function and undergoes regulation during oocyte maturation. By using enucleated oocytes, we show here that Chk1 inhibits Cdc25 function in the cytoplasm of G2-arrested oocytes and that Cdc25 is activated exclusively in the cytoplasm of maturing oocytes. Moreover, we show that Chk1 activity is not appreciably altered during maturation, being maintained at basal levels, and that C-terminal truncation mutants of Chk1 have very high kinase activities, strong abilities to inhibit maturation, and altered subcellular localization in oocytes. These results, together with other results, suggest that the Chk1/Cdc25 pathway is involved cytoplasmically in G2 arrest of Xenopus oocytes, but moderately and independent of the G2 checkpoint, and that the C-terminal region of Chk1 negatively regulates its kinase activity and also determines its subcellular localization. Based on these results, we discuss the possibility that Chk1 (with the basal activity) may function as an ordinary regulator of Cdc25 in oocytes (and in other cell types) and that Chk1 might be hyperactivated in response to the G2 checkpoint via its dramatic conformational change.


Sujet(s)
Cytoplasme/métabolisme , Ovocytes/physiologie , Protein kinases/métabolisme , cdc25 Phosphatases/métabolisme , Protéines 14-3-3 , Animaux , Compartimentation cellulaire , Checkpoint kinase 1 , Femelle , Phase G2/physiologie , Modèles biologiques , Mutation , Fragments peptidiques/métabolisme , Phosphorylation , Protein kinases/génétique , Tyrosine 3-monooxygenase/métabolisme , Xenopus , Protéines de Xénope
3.
EMBO J ; 19(8): 1816-26, 2000 Apr 17.
Article de Anglais | MEDLINE | ID: mdl-10775266

RÉSUMÉ

Nek2, a NIMA-related kinase, has been postulated to play a role in both the meiotic and mitotic cell cycles in vertebrates. Xenopus has two Nek2 splice variants, Nek2A and Nek2B, which are zygotic and maternal forms, respectively. Here we have examined the role of Nek2B in oocyte meiosis and early embryonic mitosis. Specific inhibition of Nek2B function does not interfere with the oscillation of Cdc2 activity in either the meiotic or mitotic cell cycles; however, it does cause abortive cleavage of early embryos, in which bipolar spindle formation is severely impaired due to fragmentation or dispersal of the centrosomes, to which endogenous Nek2B protein localizes. In contrast, inhibition of Nek2B function does not affect meiotic spindle formation in oocytes, in which functional centrosomes are absent. Thus, strikingly, Nek2B is specifically required for centrosome assembly and/or maintenance (and hence for normal bipolar spindle formation and cleavage) in early Xenopus embryos. Finally, (ectopic) Nek2A but not Nek2B is very labile in cleaving embryos, suggesting that Nek2A cannot replace the centrosomal function of Nek2B in early embryos.


Sujet(s)
Centrosome/physiologie , Isoenzymes , Protein-Serine-Threonine Kinases/composition chimique , Protéines de Xénope , Xenopus/embryologie , Animaux , Technique de Western , Protéine-kinase CDC2/métabolisme , Cycle cellulaire , Cycloheximide/pharmacologie , Embryon non mammalien/physiologie , Activation enzymatique , Femelle , Méiose , Microscopie confocale , Mitose , Ovocytes/physiologie , Progestérone/métabolisme , Biosynthèse des protéines , Inhibiteurs de la synthèse protéique/pharmacologie , Facteurs temps , Transcription génétique
4.
Genes Dev ; 14(3): 328-38, 2000 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-10673504

RÉSUMÉ

Meiotic cells undergo two successive divisions without an intervening S phase. However, the mechanism of S-phase omission between the two meiotic divisions is largely unknown. Here we show that Wee1, a universal mitotic inhibitor, is absent in immature (but not mature) Xenopus oocytes, being down-regulated specifically during oogenesis; this down-regulation is most likely due to a translational repression. Even the modest ectopic expression of Wee1 in immature (meiosis I) oocytes can induce interphase nucleus reformation and DNA replication just after meiosis I. Thus, the presence of Wee1 during meiosis I converts the meiotic cell cycle into a mitotic-like cell cycle having S phase. In contrast, Myt1, a Wee1-related kinase, is present and directly involved in G(2) arrest of immature oocytes, but its ectopic expression has little effect on the meiotic cell cycle. These results strongly indicate that the absence of Wee1 in meiosis I ensures the meiotic cell cycle in Xenopus oocytes. Based on these results and the data published previously in other organisms, we suggest that absence of Wee1 may be a well-conserved mechanism for omitting interphase or S phase between the two meiotic divisions.


Sujet(s)
Protéines du cycle cellulaire , Méiose/physiologie , Protéines nucléaires , Ovogenèse/physiologie , Protein-Serine-Threonine Kinases/métabolisme , Protein-tyrosine kinases/métabolisme , Protéines de Xénope , Animaux , Technique de Western , Réplication de l'ADN/physiologie , Régulation négative , Régulation de l'expression des gènes au cours du développement , Ovocytes/cytologie , Prophase/physiologie , RT-PCR , Phase S/physiologie , Xenopus
5.
Dev Genes Evol ; 210(8-9): 416-25, 2000 Sep.
Article de Anglais | MEDLINE | ID: mdl-11180847

RÉSUMÉ

Mos plays a crucial role in meiotic cell division in vertebrates. In Xenopus, Mos is involved in the initiation of oocyte maturation as an initiator and in the arrest at the metaphase II stage (MII) as a component of the cytostatic factor (CSF). The function of Mos is mediated by MAP kinase (MAPK). We investigated the function of the Mos/MAPK pathway during goldfish oocyte maturation induced by 17alpha,20beta-dihydroxy-4-pregnen-3-one (17alpha,20beta-DP), a natural maturation-inducing hormone in fishes. Mos was absent in immature goldfish oocytes. It appeared before the onset of germinal vesicle breakdown (GVBD), increased to a maximum in mature oocytes arrested at MII and disappeared after fertilization. MAPK was activated after Mos synthesis but before maturation-promoting factor (MPF) activation, and its activity reached maximum at MII. Injection of either Xenopus or goldfish c-mos mRNA into one blastomere of 2-cell-stage Xenopus and goldfish embryos induced metaphase arrest, suggesting that goldfish Mos has a CSF activity. Injection of constitutively active Xenopus c-mos mRNA into immature goldfish oocytes induced MAPK activation, but neither MPF activation nor GVBD occurred. Conversely, the injection of goldfish c-mos antisense RNA inhibited both Mos synthesis and MAPK activation in the 17alpha,20beta-DP-treated oocytes, but these oocytes underwent GVBD. These results indicate that the Mos/MAPK pathway is not essential for initiating goldfish oocyte maturation despite its general function as a CSF. We discuss the general role of Mos/MAPK during oocyte maturation, with reference to the difference in contents of inactive MPF (pre-MPF) stored in immature oocytes.


Sujet(s)
Système de signalisation des MAP kinases , Métaphase , Protéines oncogènes v-mos/physiologie , Ovocytes/cytologie , Séquence d'acides aminés , Animaux , Séquence nucléotidique , Amorces ADN , Poisson rouge , Données de séquences moléculaires , Protéines oncogènes v-mos/composition chimique , Similitude de séquences d'acides aminés , Spécificité d'espèce , Xenopus
6.
Dev Biol ; 208(2): 456-64, 1999 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-10191058

RÉSUMÉ

Nek2 kinase, a NIMA-related kinase, has been suggested to play both meiotic and mitotic roles in mammals, but its function(s) during development is poorly understood. We have isolated here cDNAs encoding a Xenopus homolog of mammalian Nek2 and have shown that Xenopus Nek2 has two structural variants, termed Nek2A and Nek2B. Nek2A, most likely a C-terminally spliced form, corresponds to the previously described human and mouse Nek2, while Nek2B is most probably a novel, C-terminally unspliced form of Nek2. As a consequence of this (probable) alternative splicing, Nek2B lacks the C-terminal 70-amino-acid sequence of Nek2A, which contains a PEST sequence (or a motif for rapid degradation). Western blot analysis reveals that Nek2A is expressed predominantly in the testis (presumably in spermatocytes) and very weakly in the stomach and, during development, only after the neurula stage. By contrast, Nek2B is expressed mainly in the ovary and in both primary and secondary oocytes and early embryos up to the neurula stage. These results suggest that Nek2A and Nek2B may play both meiotic and mitotic roles, but in a spatially and temporally complementary manner during Xenopus development, and that Nek2B, rather than Nek2A (or the conventional form of Nek2), may play an important role in early development. We discuss the possibility that a counterpart of Xenopus Nek2B might also exist and function in early mammalian development.


Sujet(s)
Protéines du cycle cellulaire , Isoenzymes/génétique , Méiose/génétique , Mitose/génétique , Protein-Serine-Threonine Kinases/génétique , Protéines de Xénope , Xenopus/génétique , Épissage alternatif , Séquence d'acides aminés , Animaux , Séquence nucléotidique , Clonage moléculaire , ADN complémentaire/génétique , Femelle , Mâle , Données de séquences moléculaires , Kinase-1 apparentée à NIMA , Kinases apparentées à NIMA , Ovaire/embryologie , Analyse de séquence d'ADN , Similitude de séquences d'acides aminés , Caractères sexuels , Testicule/embryologie , Distribution tissulaire , Xenopus/embryologie
7.
Dev Biol ; 207(2): 432-44, 1999 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-10068474

RÉSUMÉ

Chk1 kinase, a DNA damage/replication G2 checkpoint kinase, has recently been shown to phosphorylate and inhibit Cdc25C, a Cdc2 Tyr-15 phosphatase, thereby directly linking the G2 checkpoint to negative regulation of Cdc2. Immature Xenopus oocytes are arrested naturally at the first meiotic prophase (prophase I) or the late G2 phase, with sustained Cdc2 Tyr-15 phosphorylation. Here we have cloned a Xenopus homolog of Chk1, determined its developmental expression, and examined its possible role in prophase I arrest of oocytes. Xenopus Chk1 protein is expressed at approximately constant levels throughout oocyte maturation and early embryogenesis. Overexpression of wild-type Chk1 in oocytes prevents the release from prophase I arrest by progesterone. Conversely, specific inhibition of endogenous Chk1 either by overexpression of a dominant-negative Chk1 mutant or by injection of a neutralizing anti-Chk1 antibody facilitates prophase I release by progesterone. Moreover, when ectopically expressed in oocytes, a Chk1-nonphosphorylatable Cdc25C mutant alone can induce prophase I release much more efficiently than wild-type Cdc25C; if endogenous Chk1 function is inhibited, however, even wild-type Cdc25C can induce the release very efficiently. These results suggest strongly that Chk1 is involved in physiological prophase I arrest of Xenopus oocytes via the direct phosphorylation and inhibition of Cdc25C. We discuss the possibility that Chk1 might function either as a G2 checkpoint kinase or as an ordinary cell cycle regulator in prophase-I-arrested oocytes.


Sujet(s)
Ovocytes/enzymologie , Protein kinases/génétique , Xenopus/embryologie , cdc25 Phosphatases , Séquence d'acides aminés , Animaux , Séquence nucléotidique , Protéines du cycle cellulaire/antagonistes et inhibiteurs , Protéines du cycle cellulaire/métabolisme , Checkpoint kinase 1 , Clonage moléculaire , Développement embryonnaire , Régulation de l'expression des gènes au cours du développement , Méiose/génétique , Microinjections , Données de séquences moléculaires , Mutation , Ovocytes/métabolisme , Phosphoprotein Phosphatases/antagonistes et inhibiteurs , Phosphoprotein Phosphatases/métabolisme , Phosphorylation , Progestérone/pharmacologie , Prophase/génétique , Protein kinases/métabolisme , ARN messager/métabolisme , Alignement de séquences , Facteurs temps , Protéines de Xénope
9.
Proc Natl Acad Sci U S A ; 95(8): 4392-7, 1998 Apr 14.
Article de Anglais | MEDLINE | ID: mdl-9539747

RÉSUMÉ

In almost all animal species, immature oocytes are arrested naturally in the first meiotic prophase, with a large nucleus called the germinal vesicle. A number of previous studies showed that both activation of maturation/M phase-promoting factor (MPF) (assayed by semiquantitative cytological methods) and some other maturational events occur essentially normally in enucleated oocytes from many amphibian species and mice. Hence, for nearly three decades, it has generally been believed that nuclear material is dispensable for MPF activation and the meiotic cell cycle in vertebrate oocytes. Here, we have challenged this view by examining the histone H1 kinase activities and the molecular forms of MPF in experimentally manipulated Xenopus oocytes. We show that oocytes injected with nuclear material undergo much more rapid MPF activation and maturation than uninjected control oocytes. Conversely, enucleated oocytes, unlike nucleated counterparts, undergo only weak MPF activation in meiosis I and no detectable MPF reactivation in meiosis II, the latter accompanying inhibitory tyrosine phosphorylation of cdc2 kinase, the catalytic subunit of MPF. These results argue strongly that nuclear material is indispensable for the meiotic cell cycle, particularly MPF reactivation (or cdc2 tyrosine dephosphorylation) on entry into meiosis II, in Xenopus oocytes. The classical and general view may thus need reconsideration.


Sujet(s)
Cycle cellulaire/physiologie , Noyau de la cellule/physiologie , Facteur de promotion de la maturation/biosynthèse , Ovocytes/cytologie , Ovocytes/physiologie , Animaux , Protéine-kinase CDC2/biosynthèse , Protéine-kinase CDC2/métabolisme , Cycle cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , Femelle , Cinétique , Méiose , Mésothéline , Souris , Mitose , Modèles biologiques , Ovocytes/effets des médicaments et des substances chimiques , Progestérone/pharmacologie , Protein kinases/métabolisme , Xenopus
10.
Biol Cell ; 90(6-7): 509-18, 1998 Oct.
Article de Anglais | MEDLINE | ID: mdl-9923075

RÉSUMÉ

Cyclin B, a regulatory subunit of maturation/M-phase promoting factor (MPF), has several subtypes in many vertebrate species. However, it is not known whether the different B-type cyclins have any different functions in vertebrate cells, although their subcellular localizations seem to differ largely from each other. To examine the roles of two major B-type cyclins, B1 and B2, in spindle formation in M phase, we overexpressed their N-termini in Xenopus oocytes; the N-termini of cyclins B1 and B2 contained a cytoplasmic retention signal (CRS), and hence their overexpressions were expected to competitively inhibit the subcellular localizations of the endogenous cyclins B1 and B2, respectively. Upon entry into meiosis I, oocytes overexpressing the cyclin B1 N-terminus formed an apparently normal bipolar spindle, but those oocytes overexpressing the cyclin B2 N-terminus formed a monopolar (or monoastral) spindle. This defect in bipolar spindle formation was observed only when the cyclin B2 N-terminus contained its own CRS sequence, and was able to be rescued by overexpression of full-length cyclin B2. These results suggest, for the first time, that the correct subcellular localization of cyclin B2, but not of cyclin B1, is essential for (the initiation of) bipolar spindle formation in Xenopus oocytes.


Sujet(s)
Cycline B/physiologie , Ovocytes/physiologie , Signaux de triage des protéines , Appareil du fuseau/physiologie , Séquence d'acides aminés , Animaux , Cycline B/biosynthèse , Cycline B/génétique , Cycline B1 , Cytoplasme , Expression des gènes , Méiose/physiologie , Données de séquences moléculaires , Ovocytes/métabolisme , Xenopus laevis
12.
EMBO J ; 16(13): 3860-5, 1997 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-9233796

RÉSUMÉ

In vertebrates, M phase-promoting factor (MPF), a universal G2/M regulator in eukaryotic cells, drives meiotic maturation of oocytes, while cytostatic factor (CSF) arrests mature oocytes at metaphase II until fertilization. Cdk2 kinase, a G1/S regulator in higher eukaryotic cells, is activated during meiotic maturation of Xenopus oocytes and, like Mos (an essential component of CSF), is proposed to be involved in metaphase II arrest in mature oocytes. In addition, cdk2 kinase has been shown recently to be essential for MPF activation in Xenopus embryonic mitosis. Here we report injection of Xenopus oocytes with the cdk2 kinase inhibitor p21Cip in order to (re)evaluate the role of cdk2 kinase in oocyte meiosis. Immature oocytes injected with p21Cip can enter both meiosis I and meiosis II normally, as evidenced by the typical fluctuations in MPF activity. Moreover, mature oocytes injected with p21Cip are retained normally in metaphase II for a prolonged period, whereas those injected with neutralizing anti-Mos antibody are released readily from metaphase II arrest. These results argue strongly against a role for cdk2 kinase in MPF activation and its proposed role in metaphase II arrest, in Xenopus oocyte meiosis. We discuss the possibility that cdk2 kinase stored in oocytes may function, as a maternal protein, solely for early embryonic cell cycles.


Sujet(s)
Kinases CDC2-CDC28 , Kinases cyclines-dépendantes/métabolisme , Méiose , Ovocytes/cytologie , Protein-Serine-Threonine Kinases/métabolisme , Séquence d'acides aminés , Animaux , Cycle cellulaire , Kinase-2 cycline-dépendante , Inhibiteur p21 de kinase cycline-dépendante , Kinases cyclines-dépendantes/antagonistes et inhibiteurs , Cyclines/pharmacologie , Activation enzymatique , Antienzymes/pharmacologie , Humains , Facteur de promotion de la maturation/métabolisme , Métaphase , Données de séquences moléculaires , Ovocytes/métabolisme , Protein-Serine-Threonine Kinases/antagonistes et inhibiteurs , Protéines proto-oncogènes c-mos/métabolisme , Lapins , Protéines de fusion recombinantes/pharmacologie , Transduction du signal , Xenopus , Protéines de Xénope
13.
Biochem Biophys Res Commun ; 232(1): 218-22, 1997 Mar 06.
Article de Anglais | MEDLINE | ID: mdl-9125135

RÉSUMÉ

We have cloned a cDNA encoding a novel B regulatory subunit of protein phosphatase 2A (PP2A) from a Xenopus oocyte cDNA library. The novel B subunit, termed B beta', shows the strongest overall sequence similarity to, but a distinct N-terminal sequence from, the beta isoform of the human/rat B subunit. When expressed ectopically in Xenopus oocytes, the B beta' isoform can augment the endogenous PP2A activity and inhibit oocyte maturation induced by progesterone. These results suggest that the B beta' isoform can form a complex with other PP2A subunits to make a trimeric PP2A holoenzyme in Xenopus oocytes and may negatively control the initiation of oocyte maturation.


Sujet(s)
Ovocytes/enzymologie , Phosphoprotein Phosphatases/génétique , Séquence d'acides aminés , Animaux , Séquence nucléotidique , Clonage moléculaire , ADN complémentaire , Données de séquences moléculaires , Phosphoprotein Phosphatases/composition chimique , Protein Phosphatase 2 , Rats , Similitude de séquences d'acides aminés , Xenopus
14.
Bioessays ; 19(1): 13-21, 1997 Jan.
Article de Anglais | MEDLINE | ID: mdl-9008413

RÉSUMÉ

Mos, a protein kinase, is specifically expressed and functions during meiotic maturation (or G2/M progression) of vertebrate oocytes. When expressed ectopically, however, it can also readily induce oncogenic transformation (or uncontrolled G1/S transitions) in somatic cells. In both of these cell types, Mos activates mitogen-activated protein kinase (MAPK), which seems largely to mediate its different functions in both oocyte maturation and cellular transformation. In oocyte maturation, the Mos-MAPK pathway probably serves to activate and stabilize M-phase promoting factor (MPF) (possibly by inhibiting some negative regulator(s) of this factor), while in cellular transformation, it seems to stabilize and activate the nuclear oncoprotein c-Fos as well as to induce transcription of its gene. Thus, the different functions of Mos in oocytes and somatic cells may arise chiefly from its different MAPK-mediated targets in the respective cell types. This review discusses the cellular basis that may enable Mos to act differently in oocytes and somatic cells.


Sujet(s)
Ovocytes/physiologie , Protéines proto-oncogènes c-mos/physiologie , Animaux , Calcium-Calmodulin-Dependent Protein Kinases/physiologie , Cycle cellulaire/physiologie , Transformation cellulaire néoplasique , Femelle , Méiose/physiologie , Ovocytes/cytologie , Ovocytes/croissance et développement , Ovogenèse/physiologie , Xenopus
15.
Gene ; 178(1-2): 111-4, 1996 Oct 31.
Article de Anglais | MEDLINE | ID: mdl-8921900

RÉSUMÉ

From a cDNA library of Xenopus laevis (Xl) oocytes, we isolated a cDNA encoding a putative protein phosphatase homologous to mammalian Cdc25A. Sequence analysis predicts that the Xl cdc25A gene product (Xl Cdc25A) consists of 521 amino acid residues and shares overall 55% identity with human Cdc25A. When its mRNA is injected into Xl oocytes, Xl Cdc25A can act as a potent M phase inducer.


Sujet(s)
Protéines du cycle cellulaire/génétique , Méiose/génétique , Ovogenèse/génétique , Protéines de Xénope , cdc25 Phosphatases , Séquence d'acides aminés , Animaux , Séquence nucléotidique , Protéines du cycle cellulaire/métabolisme , Clonage moléculaire , ADN complémentaire , Humains , Données de séquences moléculaires , Ovocytes/physiologie , Phosphoprotein Phosphatases/génétique , Similitude de séquences d'acides aminés , Xenopus laevis
17.
Mol Cell Biol ; 16(7): 3967-79, 1996 Jul.
Article de Anglais | MEDLINE | ID: mdl-8668214

RÉSUMÉ

AML1 (also called PEBP2alphaB, CBFA2, or CBFalpha2) is one of the most frequently disrupted genes in chromosome abnormalities seen in human leukemias. It has been reported that AML1 plays several pivotal roles in myeloid hematopoietic differentiation and other biological phenomena, probably through the transcriptional regulation of various relevant genes. Here, we investigated the mechanism of regulation of AML1 functions through signal transduction pathways. The results showed that AML1 is phosphorylated in vivo on two serine residues within the proline-, serine-, and threonine-rich region, with dependence on the activation of extracellular signal-regulated kinase (ERK) and with interleukin-3 stimulation in a hematopoietic cell line. These in vivo phosphorylation sites of AML1 were phosphorylated directly in vitro by ERK. Although differences between wild-type AML1 and phosphorylation site mutants in DNA-binding affinity were not observed, we have shown that ERK-dependent phosphorylation potentiates the transactivation ability of AML1. Furthermore the phosphorylation site mutations reduced the transforming capacity of AML1 in fibroblast cells. These data indicate that AML1 functions are potentially regulated by ERK, which is activated by cytokine and growth factor stimuli. This study provides some important clues for clarifying unidentified facets of the regulatory mechanism of AML1 function.


Sujet(s)
Calcium-Calmodulin-Dependent Protein Kinases/métabolisme , Protéines de liaison à l'ADN , Leucémie myéloïde/métabolisme , Protéines tumorales/métabolisme , Facteurs de transcription/métabolisme , Activation de la transcription , Maladie aigüe , Séquence d'acides aminés , Animaux , Lignée cellulaire , Chlorocebus aethiops , Aberrations des chromosomes , Maladies chromosomiques , Sous-unité alpha 2 du facteur CBF , Humains , Leucémie myéloïde/génétique , Luciferases/métabolisme , Données de séquences moléculaires , Protéines tumorales/biosynthèse , Protéines tumorales/génétique , Phosphorylation , Protéines proto-oncogènes/métabolisme , Protéines de fusion recombinantes/métabolisme , Transduction du signal , Facteurs de transcription/biosynthèse , Facteurs de transcription/génétique , Transfection
18.
Trends Cell Biol ; 6(1): 22-8, 1996 Jan.
Article de Anglais | MEDLINE | ID: mdl-15157528

RÉSUMÉ

Metaphase arrest in meiosis I or II before fertilization is a common and unique feature of oogenesis in many animal species. How and why oocytes from many species are arrested at metaphase, rather than after the completion of meiosis, has long remained a mystery. This article reviews recent advances in our understanding of the mechanisms and biological significance of meiotic metaphase arrest in animal oocytes.

19.
EMBO J ; 14(20): 5048-59, 1995 Oct 16.
Article de Anglais | MEDLINE | ID: mdl-7588633

RÉSUMÉ

The c-mos proto-oncogene product, Mos, is a serine/threonine kinase that can activate ERK1 and 2 mitogen-activated protein (MAP) kinases by direct phosphorylation of MAPK/ERK kinase (MEK). ERK activation is essential for oncogenic transformation of NIH 3T3 cells by Mos. In this study, we examined how mitogenic and oncogenic signalling from the Mos/MEK/ERK pathway reaches the nucleus to activate downstream target genes. We show that c-Fos (the c-fos protooncogene product), which is an intrinsically unstable nuclear protein, is metabolically highly stabilized, and greatly enhances the transforming efficiency of NIH 3T3 cells, by Mos. This stabilization of c-Fos required Mos-induced phosphorylation of its C-terminal region on Ser362 and Ser374, and double replacements of these serines with acidic (Asp) residues markedly increased the stability and transforming efficiency of c-Fos even in the absence of Mos. Moreover, activation of the ERK pathway was necessary and sufficient for the c-Fos phosphorylation and stabilization by Mos. These results indicate that c-Fos undergoes stabilization, and mediates at least partly the oncogenic signalling, by the Mos/MEK/ERK pathway. The present findings also suggest that, in general, the ERK pathway may regulate the cell fate and function by affecting the metabolic stability of c-Fos.


Sujet(s)
Calcium-Calmodulin-Dependent Protein Kinases/métabolisme , Transformation cellulaire néoplasique , Protéines proto-oncogènes c-fos/métabolisme , Protéines proto-oncogènes c-mos/métabolisme , Transduction du signal , Cellules 3T3 , Séquence d'acides aminés , Animaux , Noyau de la cellule/métabolisme , Clonage moléculaire , Immunotransfert , Souris , Mitogen-Activated Protein Kinases/métabolisme , Données de séquences moléculaires , Mutation , Protéines de tissu nerveux/métabolisme , Phosphorylation , Tests aux précipitines , Protéines proto-oncogènes c-fos/génétique , Protéines recombinantes/métabolisme , Sérine/métabolisme , Transfection
20.
Mol Cell Biol ; 15(10): 5682-7, 1995 Oct.
Article de Anglais | MEDLINE | ID: mdl-7565719

RÉSUMÉ

c-Fos is associated with c-Jun to increase the transcription of a number of target genes and is a nuclear proto-oncoprotein with a very short half-life. This instability of c-Fos may be important in regulation of the normal cell cycle. Here we report a mechanism for degradation of c-Fos. Coexpression of c-Fos and c-Jun in HeLa cells caused marked increase in the instability of c-Fos, whereas v-Fos, the retroviral counterpart of c-Fos, was stable irrespective of the coexpression of c-Jun. Interestingly, deletion of the C-terminal PEST region of c-Fos, which is altered in v-Fos by a frameshift mutation, greatly enhanced its stability, with loss of the effect of c-Jun on its stability. c-Fos synthesized in vitro was degraded by the 26S proteasome in a ubiquitin-dependent fashion. Simple association with c-Jun had no effect on the degradation of c-Fos, but the additions of three protein kinases, mitogen-activated protein kinase, casein kinase II, and CDC2 kinase, resulted in marked acceleration of its degradation by the proteasome-ubiquitin system, though only in the presence of c-Jun. In contrast, v-Fos and c-Fos with a truncated PEST motif were not degraded, suggesting that they escaped from down-regulation by breakdown. These findings indicate a new oncogenic pathway induced by acquisition of intracellular stability of a cell cycle modulatory factor.


Sujet(s)
Peptide hydrolases/métabolisme , Proteasome endopeptidase complex , Protein-Serine-Threonine Kinases/physiologie , Protéines proto-oncogènes c-fos/métabolisme , Protéines proto-oncogènes c-jun/physiologie , Séquence d'acides aminés , Mutation avec décalage du cadre de lecture , Cellules HeLa , Humains , Données de séquences moléculaires , Protéines oncogènes v-fos/métabolisme , Protéines proto-oncogènes c-fos/biosynthèse , Protéines proto-oncogènes c-fos/génétique , Ubiquitines/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...