Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 27
Filtrer
1.
Elife ; 122024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38831696

RÉSUMÉ

During macroautophagy, cytoplasmic constituents are engulfed by autophagosomes. Lysosomes fuse with closed autophagosomes but not with unclosed intermediate structures. This is achieved in part by the late recruitment of the autophagosomal SNARE syntaxin 17 (STX17) to mature autophagosomes. However, how STX17 recognizes autophagosome maturation is not known. Here, we show that this temporally regulated recruitment of STX17 depends on the positively charged C-terminal region of STX17. Consistent with this finding, mature autophagosomes are more negatively charged compared with unclosed intermediate structures. This electrostatic maturation of autophagosomes is likely driven by the accumulation of phosphatidylinositol 4-phosphate (PI4P) in the autophagosomal membrane. Accordingly, dephosphorylation of autophagosomal PI4P prevents the association of STX17 to autophagosomes. Furthermore, molecular dynamics simulations support PI4P-dependent membrane insertion of the transmembrane helices of STX17. Based on these findings, we propose a model in which STX17 recruitment to mature autophagosomes is temporally regulated by a PI4P-driven change in the surface charge of autophagosomes.


Sujet(s)
Autophagosomes , Phosphates phosphatidylinositol , Protéines Qa-SNARE , Protéines Qa-SNARE/métabolisme , Protéines Qa-SNARE/génétique , Autophagosomes/métabolisme , Phosphates phosphatidylinositol/métabolisme , Humains , Simulation de dynamique moléculaire , Autophagie/physiologie
2.
Cell Struct Funct ; 48(1): 99-112, 2023 May 11.
Article de Anglais | MEDLINE | ID: mdl-37019684

RÉSUMÉ

Protein-lipid conjugation is a widespread modification involved in many biological processes. Various lipids, including fatty acids, isoprenoids, sterols, glycosylphosphatidylinositol, sphingolipids, and phospholipids, are covalently linked with proteins. These modifications direct proteins to intracellular membranes through the hydrophobic nature of lipids. Some of these membrane-binding processes are reversible through delipidation or by reducing the affinity to membranes. Many signaling molecules undergo lipid modification, and their membrane binding is important for proper signal transduction. The conjugation of proteins to lipids also influences the dynamics and function of organellar membranes. Dysregulation of lipidation has been associated with diseases such as neurodegenerative diseases. In this review, we first provide an overview of diverse forms of protein-lipid conjugation and then summarize the catalytic mechanisms, regulation, and roles of these modifications.Key words: lipid, lipidation, membrane, organelle, protein modification.


Sujet(s)
Acides gras , Protéines , Acides gras/métabolisme , Phospholipides/métabolisme , Métabolisme lipidique , Stérols/métabolisme , Membrane cellulaire/métabolisme
3.
Trends Cell Biol ; 33(11): 991-1003, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37120410

RÉSUMÉ

The covalent attachment of ubiquitin is a common regulatory mechanism in various proteins. Although it has long been thought that the substrates of ubiquitination are limited to proteins, recent studies have changed this view: ubiquitin can be conjugated to lipids, sugars, and nucleotides. Ubiquitin is linked to these substrates by the action of different classes of ubiquitin ligases that have distinct catalytic mechanisms. Ubiquitination of non-protein substrates likely serves as a signal for the recruitment of other proteins to bring about specific effects. These discoveries have expanded the concept of ubiquitination and have advanced our insight into the biology and chemistry of this well-established modification process. In this review we describe the molecular mechanisms and roles of non-protein ubiquitination and discuss the current limitations.

4.
J Biol Chem ; 299(3): 102973, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36738789

RÉSUMÉ

Although cell size regulation is crucial for cellular functions in a variety of organisms from bacteria to humans, the underlying mechanisms remain elusive. Here, we identify Rim21, a component of the pH-sensing Rim101 pathway, as a positive regulator of cell size through a flow cytometry-based genome-wide screen of Saccharomyces cerevisiae deletion mutants. We found that mutants defective in the Rim101 pathway were consistently smaller than wildtype cells in the log and stationary phases. We show that the expression of the active form of Rim101 increased the size of wildtype cells. Furthermore, the size of wildtype cells increased in response to external alkalization. Microscopic observation revealed that this cell size increase was associated with changes in both vacuolar and cytoplasmic volume. We also found that these volume changes were dependent on Rim21 and Rim101. In addition, a mutant lacking Vph1, a component of V-ATPase that is transcriptionally regulated by Rim101, was also smaller than wildtype cells, with no increase in size in response to alkalization. We demonstrate that the loss of Vph1 suppressed the Rim101-induced increase in cell size under physiological pH conditions. Taken together, our results suggest that the cell size of budding yeast is regulated by the Rim101-V-ATPase axis under physiological conditions as well as in response to alkaline stresses.


Sujet(s)
Protéines de répression , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Concentration en ions d'hydrogène , Protéines de répression/métabolisme , Saccharomyces cerevisiae/cytologie , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Vacuolar Proton-Translocating ATPases/métabolisme , Délétion de séquence
5.
Autophagy ; 19(4): 1361-1362, 2023 04.
Article de Anglais | MEDLINE | ID: mdl-36095076

RÉSUMÉ

Conjugation of Atg8-family proteins to phosphatidylethanolamine (PE) is important for autophagosome formation. PE conjugation has been thought to be specific to Atg8 among the ubiquitin-family proteins. However, this dogma has not been experimentally verified. Our recent study revealed that ubiquitin is also conjugated to PE on endosomes and the vacuole (or lysosomes). Other ubiquitin-like proteins, such as NEDD8 and ISG15, also covalently bind to phospholipids. We propose that conjugation to phospholipids could be a common feature of the ubiquitin family.


Sujet(s)
Phospholipides , Protéines de Saccharomyces cerevisiae , Protéines de Saccharomyces cerevisiae/métabolisme , Autophagie , Famille de la protéine-8 associée à l'autophagie , Ubiquitines , Ubiquitine/métabolisme , Protéines associées aux microtubules/métabolisme , Protéines associées à l'autophagie
6.
STAR Protoc ; 4(1): 101935, 2023 03 17.
Article de Anglais | MEDLINE | ID: mdl-36520633

RÉSUMÉ

Ubiquitin is covalently conjugated to phospholipids as well as proteins; however, ubiquitinated phospholipids are less abundant than free ubiquitin and ubiquitinated proteins. Here, we describe protocols to purify ubiquitinated phospholipids in budding yeast and human cells based on their hydrophobicity. Ubiquitinated phospholipids are purified by Triton X-114 phase partitioning and affinity purification and verified by phospholipase D treatment. These protocols enable the detection of tagged as well as endogenous mono- and poly-ubiquitinated phospholipids by immunoblotting. For complete details on the use and execution of this protocol, please refer to Sakamaki et al..1.


Sujet(s)
Saccharomycetales , Humains , Saccharomycetales/métabolisme , Ubiquitine/métabolisme , Protéines , Immunotransfert , Lignée cellulaire
7.
Mol Cell ; 82(19): 3677-3692.e11, 2022 10 06.
Article de Anglais | MEDLINE | ID: mdl-36044902

RÉSUMÉ

The covalent conjugation of ubiquitin family proteins is a widespread post-translational protein modification. In the ubiquitin family, the ATG8 subfamily is exceptional because it is conjugated mainly to phospholipids. However, it remains unknown whether other ubiquitin family proteins are also conjugated to phospholipids. Here, we report that ubiquitin is conjugated to phospholipids, mainly phosphatidylethanolamine (PE), in yeast and mammalian cells. Ubiquitinated PE (Ub-PE) accumulates at endosomes and the vacuole (or lysosomes), and its level increases during starvation. Ub-PE is also found in baculoviruses. In yeast, PE ubiquitination is catalyzed by the canonical ubiquitin system enzymes Uba1 (E1), Ubc4/5 (E2), and Tul1 (E3) and is reversed by Doa4. Liposomes containing Ub-PE recruit the ESCRT components Vps27-Hse1 and Vps23 in vitro. Ubiquitin-like NEDD8 and ISG15 are also conjugated to phospholipids. These findings suggest that the conjugation to membrane phospholipids is not specific to ATG8 but is a general feature of the ubiquitin family.


Sujet(s)
Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animaux , Complexes de tri endosomique requis pour le transport/génétique , Complexes de tri endosomique requis pour le transport/métabolisme , Liposomes/métabolisme , Mammifères/métabolisme , Phosphatidyléthanolamine/métabolisme , Phospholipides/métabolisme , Récepteurs cytoplasmiques et nucléaires/métabolisme , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Ubiquitine/métabolisme , Ubiquitin-conjugating enzymes/génétique , Ubiquitin-conjugating enzymes/métabolisme , Ubiquitination
8.
Commun Biol ; 4(1): 907, 2021 07 23.
Article de Anglais | MEDLINE | ID: mdl-34302056

RÉSUMÉ

Loss of pancreatic ß cells is the hallmark of type 1 diabetes, for which provision of insulin is the standard of care. While regenerative and stem cell therapies hold the promise of generating single-source or host-matched tissue to obviate immune-mediated complications, these will still require surgical intervention and immunosuppression. Here we report the development of a high-throughput RNAi screening approach to identify upstream pathways that regulate adult human ß cell quiescence and demonstrate in a screen of the GPCRome that silencing G-protein coupled receptor 3 (GPR3) leads to human pancreatic ß cell proliferation. Loss of GPR3 leads to activation of Salt Inducible Kinase 2 (SIK2), which is necessary and sufficient to drive cell cycle entry, increase ß cell mass, and enhance insulin secretion in mice. Taken together, our data show that targeting the GPR3-SIK2 pathway is a potential strategy to stimulate the regeneration of ß cells.


Sujet(s)
Prolifération cellulaire/génétique , Cellules à insuline/physiologie , Protein-Serine-Threonine Kinases/génétique , Récepteurs couplés aux protéines G/génétique , Animaux , Humains , Souris , Protein-Serine-Threonine Kinases/métabolisme , Récepteurs couplés aux protéines G/métabolisme , Transduction du signal
9.
J Biol Chem ; 296: 100780, 2021.
Article de Anglais | MEDLINE | ID: mdl-34000301

RÉSUMÉ

Macroautophagy (hereafter, autophagy) is a process that directs the degradation of cytoplasmic material in lysosomes. In addition to its homeostatic roles, autophagy undergoes dynamic positive and negative regulation in response to multiple forms of cellular stress, thus enabling the survival of cells. However, the precise mechanisms of autophagy regulation are not fully understood. To identify potential negative regulators of autophagy, we performed a genome-wide CRISPR screen using the quantitative autophagic flux reporter GFP-LC3-RFP. We identified phosphoribosylformylglycinamidine synthase, a component of the de novo purine synthesis pathway, as one such negative regulator of autophagy. Autophagy was activated in cells lacking phosphoribosylformylglycinamidine synthase or phosphoribosyl pyrophosphate amidotransferase, another de novo purine synthesis enzyme, or treated with methotrexate when exogenous levels of purines were insufficient. Purine starvation-induced autophagy activation was concomitant with mammalian target of rapamycin complex 1 (mTORC1) suppression and was profoundly suppressed in cells deficient for tuberous sclerosis complex 2, which negatively regulates mTORC1 through inhibition of Ras homolog enriched in brain, suggesting that purines regulate autophagy through the tuberous sclerosis complex-Ras homolog enriched in brain-mTORC1 signaling axis. Moreover, depletion of the pyrimidine synthesis enzymes carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase and dihydroorotate dehydrogenase activated autophagy as well, although mTORC1 activity was not altered by pyrimidine shortage. These results suggest a different mechanism of autophagy induction between purine and pyrimidine starvation. These findings provide novel insights into the regulation of autophagy by nucleotides and possibly the role of autophagy in nucleotide metabolism, leading to further developing anticancer strategies involving nucleotide synthesis and autophagy.


Sujet(s)
Autophagie , Systèmes CRISPR-Cas , Amidophosphoribosyltransferase/génétique , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/génétique , Clustered regularly interspaced short palindromic repeats , Édition de gène , Cellules HEK293 , Humains , Complexe-1 cible mécanistique de la rapamycine/génétique
10.
Nat Commun ; 12(1): 241, 2021 01 11.
Article de Anglais | MEDLINE | ID: mdl-33431824

RÉSUMÉ

Acute myeloid leukemia (AML) is a typically lethal molecularly heterogeneous disease, with few broad-spectrum therapeutic targets. Unusually, most AML retain wild-type TP53, encoding the pro-apoptotic tumor suppressor p53. MDM2 inhibitors (MDM2i), which activate wild-type p53, and BET inhibitors (BETi), targeting the BET-family co-activator BRD4, both show encouraging pre-clinical activity, but limited clinical activity as single agents. Here, we report enhanced toxicity of combined MDM2i and BETi towards AML cell lines, primary human blasts and mouse models, resulting from BETi's ability to evict an unexpected repressive form of BRD4 from p53 target genes, and hence potentiate MDM2i-induced p53 activation. These results indicate that wild-type TP53 and a transcriptional repressor function of BRD4 together represent a potential broad-spectrum synthetic therapeutic vulnerability for AML.


Sujet(s)
Protocoles de polychimiothérapie antinéoplasique/usage thérapeutique , Protéines du cycle cellulaire/métabolisme , Leucémie aigüe myéloïde/traitement médicamenteux , Thérapie moléculaire ciblée , Facteurs de transcription/métabolisme , Protéine p53 suppresseur de tumeur/métabolisme , Animaux , Protocoles de polychimiothérapie antinéoplasique/pharmacologie , Crise blastique/anatomopathologie , Protéines du cycle cellulaire/antagonistes et inhibiteurs , Lignée cellulaire tumorale , Modèles animaux de maladie humaine , Régulation de l'expression des gènes dans la leucémie/effets des médicaments et des substances chimiques , Humains , Protéines et peptides de signalisation intracellulaire/métabolisme , Leucémie aigüe myéloïde/génétique , Souris , Protein-Serine-Threonine Kinases/antagonistes et inhibiteurs , Protein-Serine-Threonine Kinases/métabolisme , Protéines proto-oncogènes c-mdm2/antagonistes et inhibiteurs , Protéines proto-oncogènes c-mdm2/métabolisme , ARN messager/génétique , ARN messager/métabolisme , Facteurs de transcription/antagonistes et inhibiteurs
11.
Cancer Res ; 79(8): 1884-1898, 2019 04 15.
Article de Anglais | MEDLINE | ID: mdl-30765601

RÉSUMÉ

Pancreatic ductal adenocarcinoma (PDAC) is driven by metabolic changes in pancreatic cells caused by oncogenic mutations and dysregulation of p53. PDAC cell lines and PDAC-derived xenografts grow as a result of altered metabolic pathways, changes in stroma, and autophagy. Selective targeting and inhibition of one of these may open avenues for the development of new therapeutic strategies. In this study, we performed a genome-wide siRNA screen in a PDAC cell line using endogenous autophagy as a readout and identified several regulators of autophagy that were required for autophagy-dependent PDAC cell survival. Validation of two promising candidates, MPP7 (MAGUK p55 subfamily member 7, a scaffolding protein involved in cell-cell contacts) and MDH1 (cytosolic Malate dehydrogenase 1), revealed their role in early stages of autophagy during autophagosome formation. MPP7 was involved in the activation of YAP1 (a transcriptional coactivator in the Hippo pathway), which in turn promoted autophagy, whereas MDH1 was required for maintenance of the levels of the essential autophagy initiator serine-threonine kinase ULK1, and increased in the activity upon induction of autophagy. Our results provide a possible explanation for how autophagy is regulated by MPP7 and MDH1, which adds to our understanding of autophagy regulation in PDAC. SIGNIFICANCE: This study identifies and characterizes MPP7 and MDH1 as novel regulators of autophagy, which is thought to be responsible for pancreatic cancer cell survival.


Sujet(s)
Autophagie , Carcinome du canal pancréatique/anatomopathologie , Régulation de l'expression des gènes tumoraux , Malate dehydrogenase/métabolisme , Protéines membranaires/métabolisme , Tumeurs du pancréas/anatomopathologie , Protéines adaptatrices de la transduction du signal/génétique , Protéines adaptatrices de la transduction du signal/métabolisme , Apoptose , Homologue de la protéine-1 associée à l'autophagie/génétique , Homologue de la protéine-1 associée à l'autophagie/métabolisme , Carcinome du canal pancréatique/génétique , Carcinome du canal pancréatique/métabolisme , Prolifération cellulaire , Humains , Protéines et peptides de signalisation intracellulaire/génétique , Protéines et peptides de signalisation intracellulaire/métabolisme , Malate dehydrogenase/antagonistes et inhibiteurs , Malate dehydrogenase/génétique , Protéines membranaires/génétique , Tumeurs du pancréas/génétique , Tumeurs du pancréas/métabolisme , Petit ARN interférent/génétique , Transduction du signal , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Cellules cancéreuses en culture , Protéines de signalisation YAP
12.
Methods Mol Biol ; 1880: 359-374, 2019.
Article de Anglais | MEDLINE | ID: mdl-30610710

RÉSUMÉ

Autophagy is a highly regulated process, and its deregulation can contribute to various diseases, including cancer, immune diseases, and neurodegenerative disorders. Here we describe the design, protocol, and analysis of an imaging-based high-throughput screen with an endogenous autophagy readout. The screen uses a genome-wide siRNA library to identify autophagy regulators in mammalian cells.


Sujet(s)
Autophagie/génétique , Techniques de knock-down de gènes/méthodes , Petit ARN interférent/métabolisme , Animaux , Techniques de culture cellulaire/instrumentation , Techniques de culture cellulaire/méthodes , Lignée cellulaire , Techniques de knock-down de gènes/instrumentation , Tests de criblage à haut débit/instrumentation , Tests de criblage à haut débit/méthodes , Humains , Protéines associées aux microtubules/génétique , Interférence par ARN , Petit ARN interférent/génétique , Transfection/instrumentation , Transfection/méthodes
13.
Nature ; 563(7733): 719-723, 2018 11.
Article de Anglais | MEDLINE | ID: mdl-30464341

RÉSUMÉ

It is now well established that tumours undergo changes in cellular metabolism1. As this can reveal tumour cell vulnerabilities and because many tumours exhibit enhanced glucose uptake2, we have been interested in how tumour cells respond to different forms of sugar. Here we report that the monosaccharide mannose causes growth retardation in several tumour types in vitro, and enhances cell death in response to major forms of chemotherapy. We then show that these effects also occur in vivo in mice following the oral administration of mannose, without significantly affecting the weight and health of the animals. Mechanistically, mannose is taken up by the same transporter(s) as glucose3 but accumulates as mannose-6-phosphate in cells, and this impairs the further metabolism of glucose in glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway and glycan synthesis. As a result, the administration of mannose in combination with conventional chemotherapy affects levels of anti-apoptotic proteins of the Bcl-2 family, leading to sensitization to cell death. Finally we show that susceptibility to mannose is dependent on the levels of phosphomannose isomerase (PMI). Cells with low levels of PMI are sensitive to mannose, whereas cells with high levels are resistant, but can be made sensitive by RNA-interference-mediated depletion of the enzyme. In addition, we use tissue microarrays to show that PMI levels also vary greatly between different patients and different tumour types, indicating that PMI levels could be used as a biomarker to direct the successful administration of mannose. We consider that the administration of mannose could be a simple, safe and selective therapy in the treatment of cancer, and could be applicable to multiple tumour types.


Sujet(s)
Antinéoplasiques/pharmacologie , Antinéoplasiques/usage thérapeutique , Mannose/métabolisme , Mannose/pharmacologie , Tumeurs/traitement médicamenteux , Tumeurs/métabolisme , Administration par voie orale , Animaux , Apoptose/effets des médicaments et des substances chimiques , Marqueurs biologiques tumoraux/métabolisme , Poids/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Prolifération cellulaire/effets des médicaments et des substances chimiques , Régulation négative/effets des médicaments et des substances chimiques , Synergie des médicaments , Femelle , Glucose/métabolisme , Glycolyse/effets des médicaments et des substances chimiques , Humains , Mannose/administration et posologie , Mannose/usage thérapeutique , Mannose 6-phosphate isomerase/déficit , Mannose 6-phosphate isomerase/génétique , Mannose 6-phosphate isomerase/métabolisme , Mannose phosphate/métabolisme , Souris , Souris de lignée C57BL , Souris nude , Protéine Mcl-1/métabolisme , Tumeurs/classification , Tumeurs/anatomopathologie , Interférence par ARN , Protéine bcl-X/métabolisme
14.
Transcription ; 9(2): 131-136, 2018.
Article de Anglais | MEDLINE | ID: mdl-28980873

RÉSUMÉ

Autophagy is an essential cellular process that degrades cytoplasmic organelles and components. Precise control of autophagic activity is achieved by context-dependent signaling pathways. Recent studies have highlighted the involvement of transcriptional programs during autophagic responses to various signals. Here, we summarize the current understanding of the transcriptional regulation of autophagy.


Sujet(s)
Autophagie , Transcription génétique , Animaux , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines/génétique , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines/métabolisme , Protéines du cycle cellulaire , Code histone , Humains , Lysosomes/génétique , Lysosomes/métabolisme , Protéines nucléaires/génétique , Protéines nucléaires/métabolisme , Transduction du signal , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Activation de la transcription
15.
Autophagy ; 13(11): 2006-2007, 2017.
Article de Anglais | MEDLINE | ID: mdl-28933601

RÉSUMÉ

Macroautophagy/autophagy is an intracellular recycling system that delivers cytoplasmic organelles and materials to lysosomes for degradation. This process is operated by autophagy-related (ATG) genes and tightly controlled by stress-responsive signaling pathways. Our recent study revealed that autophagy programs are transcriptionally suppressed by the BET family protein BRD4. This repression is alleviated during nutrient deprivation through the AMPK-SIRT1 pathway. Our findings therefore provide new insights into the regulation of autophagy.


Sujet(s)
Autophagie , Régulation de l'expression des gènes , Lysosomes , Protéines nucléaires/génétique , Facteurs de transcription/génétique
16.
Mol Cell ; 66(4): 517-532.e9, 2017 May 18.
Article de Anglais | MEDLINE | ID: mdl-28525743

RÉSUMÉ

Autophagy is a membrane-trafficking process that directs degradation of cytoplasmic material in lysosomes. The process promotes cellular fidelity, and while the core machinery of autophagy is known, the mechanisms that promote and sustain autophagy are less well defined. Here we report that the epigenetic reader BRD4 and the methyltransferase G9a repress a TFEB/TFE3/MITF-independent transcriptional program that promotes autophagy and lysosome biogenesis. We show that BRD4 knockdown induces autophagy in vitro and in vivo in response to some, but not all, situations. In the case of starvation, a signaling cascade involving AMPK and histone deacetylase SIRT1 displaces chromatin-bound BRD4, instigating autophagy gene activation and cell survival. Importantly, this program is directed independently and also reciprocally to the growth-promoting properties of BRD4 and is potently repressed by BRD4-NUT, a driver of NUT midline carcinoma. These findings therefore identify a distinct and selective mechanism of autophagy regulation.


Sujet(s)
Autophagie , Carcinome du canal pancréatique/métabolisme , Lysosomes/métabolisme , Protéines nucléaires/métabolisme , Tumeurs du pancréas/métabolisme , Facteurs de transcription/métabolisme , Transcription génétique , AMP-Activated Protein Kinases/métabolisme , Animaux , Carcinome du canal pancréatique/génétique , Carcinome du canal pancréatique/anatomopathologie , Protéines du cycle cellulaire , Lignée cellulaire tumorale , Prolifération cellulaire , Chromatine/génétique , Chromatine/métabolisme , Régulation négative , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Métabolisme énergétique , Régulation de l'expression des gènes tumoraux , Cellules HEK293 , Antigènes d'histocompatibilité/génétique , Antigènes d'histocompatibilité/métabolisme , Histone-lysine N-methyltransferase/génétique , Histone-lysine N-methyltransferase/métabolisme , Humains , Lysosomes/anatomopathologie , Souris de lignée C57BL , Souris transgéniques , Protéines nucléaires/génétique , Protéines de fusion oncogènes/génétique , Protéines de fusion oncogènes/métabolisme , Tumeurs du pancréas/génétique , Tumeurs du pancréas/anatomopathologie , Agrégats de protéines , Liaison aux protéines , Protéolyse , Interférence par ARN , Transduction du signal , Sirtuine-1/génétique , Sirtuine-1/métabolisme , Sérine-thréonine kinases TOR/génétique , Sérine-thréonine kinases TOR/métabolisme , Facteurs temps , Facteurs de transcription/génétique , Transfection
17.
Front Oncol ; 7: 28, 2017.
Article de Anglais | MEDLINE | ID: mdl-28316954

RÉSUMÉ

Pancreatic ductal adenocarcinoma (PDAC) is one of the few cancer types where the 5-year survival rate shows no improvement. Despite conflicting evidence, the majority of data points to an essential role for autophagy in PDAC growth and survival, in particular constitutively activated autophagy, can provide crucial fuel to PDAC tumor cells in their nutrient-deprived environment. Autophagy, which is required for cell homeostasis, can both suppress and promote tumorigenesis and tumor survival in a context-dependent manner. Protein by protein, the mystery of how PDAC abuses the cell's homeostasis system for its malignant growth has recently begun to be unraveled. In this review, we focus on how autophagy is responsible for growth and development of PDAC tumors and where autophagy and the mechanisms controlling it fit into PDAC metabolism. Understanding the range of pathways controlling autophagy and their interplay in PDAC could open the way for new therapeutic avenues.

18.
Mol Cell Biol ; 36(21): 2755-2766, 2016 11.
Article de Anglais | MEDLINE | ID: mdl-27550812

RÉSUMÉ

Forkhead box O (FOXO; DAF-16 in nematode) transcription factors activate a program of genes that control stress resistance, metabolism, and lifespan. Given the adverse impact of the stochastic DNA damage on organismal development and ageing, we examined the role of FOXO/DAF-16 in UV-induced DNA-damage response. Knockdown of FOXO1, but not FOXO3a, increases sensitivity to UV irradiation when exposed during S phase, suggesting a contribution of FOXO1 to translesion DNA synthesis (TLS), a replicative bypass of UV-induced DNA lesions. Actually, FOXO1 depletion results in a sustained activation of the ATR-Chk1 signaling and a reduction of PCNA monoubiquitination following UV irradiation. FOXO1 does not alter the expression of TLS-related genes but binds to the protein replication protein A (RPA1) that coats single-stranded DNA and acts as a scaffold for TLS. In Caenorhabditis elegans, daf-16 null mutants show UV-induced retardation in larval development and are rescued by overexpressing DAF-16 mutant lacking transactivation domain, but not substitution mutant unable to interact with RPA-1. Thus, our findings demonstrate that FOXO1/DAF-16 is a functional component in TLS independently of its transactivation activity.

19.
Dev Cell ; 37(4): 291-293, 2016 05 23.
Article de Anglais | MEDLINE | ID: mdl-27219055

RÉSUMÉ

Macroautophagy facilitates degradation of cellular constituents and can positively or negatively affect cell death depending on the context. In this issue of Developmental Cell, Goodall and colleagues (2016) add to this complexity by showing that autophagy regulators can determine not only cell viability, but also the mechanism by which cells die.


Sujet(s)
Apoptose/effets des médicaments et des substances chimiques , Autophagie/effets des médicaments et des substances chimiques , Ligand TRAIL/pharmacologie , Animaux , Autophagosomes/métabolisme , Humains , Modèles biologiques , Nécrose , Transduction du signal
20.
Nat Cell Biol ; 16(3): 234-44, 2014 Mar.
Article de Anglais | MEDLINE | ID: mdl-24561619

RÉSUMÉ

Energy sensing by the AMP-activated protein kinase (AMPK) is of fundamental importance in cell biology. In the pancreatic ß-cell, AMPK is a central regulator of insulin secretion. The capacity of the ß-cell to increase insulin output is a critical compensatory mechanism in prediabetes, yet its molecular underpinnings are unclear. Here we delineate a complex consisting of the AMPK-related kinase SIK2, the CDK5 activator CDK5R1 (also known as p35) and the E3 ligase PJA2 essential for ß-cell functional compensation. Following glucose stimulation, SIK2 phosphorylates p35 at Ser 91, to trigger its ubiquitylation by PJA2 and promote insulin secretion. Furthermore, SIK2 accumulates in ß-cells in models of metabolic syndrome to permit compensatory secretion; in contrast, ß-cell knockout of SIK2 leads to accumulation of p35 and impaired secretion. This work demonstrates that the SIK2-p35-PJA2 complex is essential for glucose homeostasis and provides a link between p35-CDK5 and the AMPK family in excitable cells.


Sujet(s)
Cellules à insuline/physiologie , Phosphotransferases/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Ubiquitin-protein ligases/métabolisme , Animaux , Signalisation calcique , Femelle , Glucose/physiologie , Intolérance au glucose/génétique , Intolérance au glucose/métabolisme , Insuline/métabolisme , Sécrétion d'insuline , Mâle , Potentiels de membrane , Syndrome métabolique X/génétique , Syndrome métabolique X/métabolisme , Souris , Souris de souche-129 , Souris de lignée C57BL , Souris knockout , Phosphorylation , Ubiquitination
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE