Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 16 de 16
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Plant Cell ; 36(7): 2550-2569, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38513608

RÉSUMÉ

Embryo development in Arabidopsis (Arabidopsis thaliana) starts off with an asymmetric division of the zygote to generate the precursors of the embryo proper and the supporting extraembryonic suspensor. The suspensor degenerates as the development of the embryo proper proceeds beyond the heart stage. Until the globular stage, the suspensor maintains embryonic potential and can form embryos in the absence of the developing embryo proper. We report a mutant called meerling-1 (mrl-1), which shows a high penetrance of suspensor-derived polyembryony due to delayed development of the embryo proper. Eventually, embryos from both apical and suspensor lineages successfully develop into normal plants and complete their life cycle. We identified the causal mutation as a genomic rearrangement altering the promoter of the Arabidopsis U3 SMALL NUCLEOLAR RNA-ASSOCIATED PROTEIN 18 (UTP18) homolog that encodes a nucleolar-localized WD40-repeat protein involved in processing 18S preribosomal RNA. Accordingly, root-specific knockout of UTP18 caused growth arrest and accumulation of unprocessed 18S pre-rRNA. We generated the mrl-2 loss-of-function mutant and observed asynchronous megagametophyte development causing embryo sac abortion. Together, our results indicate that promoter rearrangement decreased UTP18 protein abundance during early stage embryo proper development, triggering suspensor-derived embryogenesis. Our data support the existence of noncell autonomous signaling from the embryo proper to prevent direct reprogramming of the suspensor toward embryonic fate.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Mutation , Graines , Arabidopsis/génétique , Arabidopsis/embryologie , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Mutation/génétique , Graines/génétique , Graines/croissance et développement , Régulation de l'expression des gènes végétaux , ARN ribosomique/génétique
2.
PLoS Genet ; 16(4): e1008732, 2020 04.
Article de Anglais | MEDLINE | ID: mdl-32282821

RÉSUMÉ

Transcription termination has important regulatory functions, impacting mRNA stability, localization and translation potential. Failure to appropriately terminate transcription can also lead to read-through transcription and the synthesis of antisense RNAs which can have profound impact on gene expression. The Transcription-Export (THO/TREX) protein complex plays an important role in coupling transcription with splicing and export of mRNA. However, little is known about the role of the THO/TREX complex in the control of transcription termination. In this work, we show that two proteins of the THO/TREX complex, namely TREX COMPONENT 1 (TEX1 or THO3) and HYPER RECOMBINATION1 (HPR1 or THO1) contribute to the correct transcription termination at several loci in Arabidopsis thaliana. We first demonstrate this by showing defective termination in tex1 and hpr1 mutants at the nopaline synthase (NOS) terminator present in a T-DNA inserted between exon 1 and 3 of the PHO1 locus in the pho1-7 mutant. Read-through transcription beyond the NOS terminator and splicing-out of the T-DNA resulted in the generation of a near full-length PHO1 mRNA (minus exon 2) in the tex1 pho1-7 and hpr1 pho1-7 double mutants, with enhanced production of a truncated PHO1 protein that retained phosphate export activity. Consequently, the strong reduction of shoot growth associated with the severe phosphate deficiency of the pho1-7 mutant was alleviated in the tex1 pho1-7 and hpr1 pho1-7 double mutants. Additionally, we show that RNA termination defects in tex1 and hpr1 mutants leads to 3'UTR extensions in several endogenous genes. These results demonstrate that THO/TREX complex contributes to the regulation of transcription termination.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/génétique , Terminaison de la transcription , Amino-acid oxidoreductases/génétique , Amino-acid oxidoreductases/métabolisme , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Régulation de l'expression des gènes végétaux
3.
PeerJ ; 8: e8214, 2020.
Article de Anglais | MEDLINE | ID: mdl-31934500

RÉSUMÉ

Structural variants (SVs) are an important class of genetic variation implicated in a wide array of genetic diseases including cancer. Despite the advances in whole genome sequencing, comprehensive and accurate detection of SVs in short-read data still poses some practical and computational challenges. We present sv-callers, a highly portable workflow that enables parallel execution of multiple SV detection tools, as well as provide users with example analyses of detected SV callsets in a Jupyter Notebook. This workflow supports easy deployment of software dependencies, configuration and addition of new analysis tools. Moreover, porting it to different computing systems requires minimal effort. Finally, we demonstrate the utility of the workflow by performing both somatic and germline SV analyses on different high-performance computing systems.

4.
Proc Natl Acad Sci U S A ; 115(20): E4700-E4709, 2018 05 15.
Article de Anglais | MEDLINE | ID: mdl-29717040

RÉSUMÉ

Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants.


Sujet(s)
Évolution biologique , Fabaceae/génétique , Génomique/méthodes , Fixation de l'azote , Protéines végétales/génétique , Nodulation racinaire/génétique , Rhizobium/physiologie , Symbiose , Séquence d'acides aminés , Fabaceae/microbiologie , Azote/métabolisme , Phénotype , Phylogenèse , Nodules racinaires de plante , Similitude de séquences
5.
Plant Cell Physiol ; 58(10): 1801-1811, 2017 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-29016942

RÉSUMÉ

Membrane traffic at the trans-Golgi network (TGN) is crucial for correctly distributing various membrane proteins to their destination. Polarly localized auxin efflux proteins, including PIN-FORMED1 (PIN1), are dynamically transported between the endosomes and the plasma membrane (PM) in the plant cells. The intracellular trafficking of PIN1 protein is sensitive to the fungal toxin brefeldin A (BFA), which is known to inhibit guanine nucleotide exchange factors for ADP ribosylation factors (ARF GEFs) such as GNOM. However, the molecular details of the BFA-sensitive trafficking pathway have not been fully revealed. In a previous study, we identified an Arabidopsis mutant BFA-visualized endocytic trafficking defective 3 (ben3) which exhibited reduced sensitivity to BFA in terms of BFA-induced intracellular PIN1 agglomeration. Here, we show that BEN3 encodes a member of BIG family ARF GEFs, BIG2. BEN3/BIG2 tagged with fluorescent proteins co-localized with markers for the TGN/early endosome (EE). Inspection of conditionally induced de novo synthesized PIN1 confirmed that its secretion to the PM is BFA sensitive, and established BEN3/BIG2 as a crucial component of this BFA action at the level of the TGN/EE. Furthermore, ben3 mutation alleviated BFA-induced agglomeration of another TGN-localized ARF GEF, BEN1/MIN7. Taken together, our results suggest that BEN3/BIG2 is an ARF GEF component, which confers BFA sensitivity to the TGN/EE in Arabidopsis.


Sujet(s)
Facteurs d'ADP-ribosylation/métabolisme , Protéines d'Arabidopsis/métabolisme , Arabidopsis/métabolisme , Bréfeldine A/pharmacologie , Endosomes/métabolisme , Facteurs d'échange de nucléotides guanyliques/métabolisme , Réseau trans-golgien/métabolisme , Facteurs d'ADP-ribosylation/génétique , Allèles , Arabidopsis/effets des médicaments et des substances chimiques , Protéines d'Arabidopsis/génétique , Compartimentation cellulaire , Membrane cellulaire/effets des médicaments et des substances chimiques , Membrane cellulaire/métabolisme , Clonage moléculaire , Codon non-sens/génétique , Endosomes/effets des médicaments et des substances chimiques , Protéines à fluorescence verte/métabolisme , Phénotype , Transport des protéines/effets des médicaments et des substances chimiques , Plant/effets des médicaments et des substances chimiques , Plant/croissance et développement , Réseau trans-golgien/effets des médicaments et des substances chimiques
6.
Plant Cell ; 28(12): 2937-2951, 2016 12.
Article de Anglais | MEDLINE | ID: mdl-27920338

RÉSUMÉ

Organ formation in animals and plants relies on precise control of cell state transitions to turn stem cell daughters into fully differentiated cells. In plants, cells cannot rearrange due to shared cell walls. Thus, differentiation progression and the accompanying cell expansion must be tightly coordinated across tissues. PLETHORA (PLT) transcription factor gradients are unique in their ability to guide the progression of cell differentiation at different positions in the growing Arabidopsis thaliana root, which contrasts with well-described transcription factor gradients in animals specifying distinct cell fates within an essentially static context. To understand the output of the PLT gradient, we studied the gene set transcriptionally controlled by PLTs. Our work reveals how the PLT gradient can regulate cell state by region-specific induction of cell proliferation genes and repression of differentiation. Moreover, PLT targets include major patterning genes and autoregulatory feedback components, enforcing their role as master regulators of organ development.


Sujet(s)
Arabidopsis/cytologie , Arabidopsis/génétique , Différenciation cellulaire/génétique , Régulation de l'expression des gènes végétaux , Réseaux de régulation génique/génétique , Racines de plante/cytologie , Racines de plante/génétique , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
7.
Nat Plants ; 2: 16113, 2016 07 25.
Article de Anglais | MEDLINE | ID: mdl-27455051

RÉSUMÉ

Casparian strips are precisely localized and aligned ring-like cell wall modifications in the root of all higher plants. They set up an extracellular diffusion barrier analogous to animal tight junctions, and are crucial for maintaining the homeostatic capacity of plant roots. Casparian strips become localized because of the formation of a highly stable plasma membrane domain, consisting of a family of small transmembrane proteins called Casparian strip membrane domain proteins (CASPs). Here we report a large-scale forward genetic screen directly visualizing endodermal barrier function, which allowed us to identify factors required for the formation and integrity of Casparian strips. We present the identification and characterization of one of the mutants, schengen1 (sgn1), a receptor-like cytoplasmic kinase that we show localizes in a strictly polar fashion to the outer plasma membrane of endodermal cells and is required for the positioning and correct formation of the centrally located CASP domain.


Sujet(s)
Protéines d'Arabidopsis/génétique , Arabidopsis/génétique , Membrane cellulaire/métabolisme , Paroi cellulaire/métabolisme , Protéines membranaires/génétique , Protéines d'Arabidopsis/métabolisme , Diffusion , Protéines membranaires/métabolisme
8.
New Phytol ; 205(3): 1076-1082, 2015 Feb.
Article de Anglais | MEDLINE | ID: mdl-25490966

RÉSUMÉ

Natural genetic variation is crucial for adaptability of plants to different environments. Seed dormancy prevents precocious germination in unsuitable conditions and is an adaptation to a major macro-environmental parameter, the seasonal variation in temperature and day length. Here we report the isolation of IBO, a quantitative trait locus (QTL) that governs c. 30% of germination rate variance in an Arabidopsis recombinant inbred line (RIL) population derived from the parental accessions Eilenburg-0 (Eil-0) and Loch Ness-0 (Lc-0). IBO encodes an uncharacterized phosphatase 2C-related protein, but neither the Eil-0 nor the Lc-0 variant, which differ in a single amino acid, have any appreciable phosphatase activity in in vitro assays. However, we found that the amino acid change in the Lc-0 variant of the IBO protein confers reduced germination rate. Moreover, unlike the Eil-0 variant of the protein, the Lc-0 variant can interfere with the activity of the phosphatase 2C ABSCISIC ACID INSENSITIVE 1 in vitro. This suggests that the Lc-0 variant possibly interferes with abscisic acid signaling, a notion that is supported by physiological assays. Thus, we isolated an example of a QTL allele with a nonsynonymous amino acid change that might mediate local adaptation of seed germination timing.


Sujet(s)
Acide abscissique/métabolisme , Séquence d'acides aminés , Arabidopsis/génétique , Germination/génétique , Phosphoprotein Phosphatases/génétique , Dormance des plantes/génétique , Locus de caractère quantitatif , Adaptation physiologique , Acides aminés/génétique , Acides aminés/métabolisme , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Régulation de l'expression des gènes végétaux , Phosphoprotein Phosphatases/métabolisme , Protein phosphatase 2C , Graines/croissance et développement , Transduction du signal
9.
Proc Natl Acad Sci U S A ; 110(38): 15473-8, 2013 Sep 17.
Article de Anglais | MEDLINE | ID: mdl-24003128

RÉSUMÉ

Wound responses in plants have to be coordinated between organs so that locally reduced growth in a wounded tissue is balanced by appropriate growth elsewhere in the body. We used a JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected in the organ-specific activation of jasmonate (JA) signaling in Arabidopsis thaliana seedlings. Wounding one cotyledon activated the reporter in both aerial and root tissues, and this was either disrupted or restricted to certain organs in mutant alleles of core components of the JA pathway including COI1, OPR3, and JAR1. In contrast, three other mutants showed constitutive activation of the reporter in the roots and hypocotyls of unwounded seedlings. All three lines harbored mutations in Novel Interactor of JAZ (NINJA), which encodes part of a repressor complex that negatively regulates JA signaling. These ninja mutants displayed shorter roots mimicking JA-mediated growth inhibition, and this was due to reduced cell elongation. Remarkably, this phenotype and the constitutive JAZ10 expression were still observed in backgrounds lacking the ability to synthesize JA or the key transcriptional activator MYC2. Therefore, JA-like responses can be recapitulated in specific tissues without changing a plant's ability to make or perceive JA, and MYC2 either has no role or is not the only derepressed transcription factor in ninja mutants. Our results show that the role of NINJA in the root is to repress JA signaling and allow normal cell elongation. Furthermore, the regulation of the JA pathway differs between roots and aerial tissues at all levels, from JA biosynthesis to transcriptional activation.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/croissance et développement , Protéines nucléaires/métabolisme , Racines de plante/croissance et développement , Protéines de répression/métabolisme , Plant/croissance et développement , Transduction du signal/physiologie , Analyse de variance , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Amorces ADN , Fleurs/génétique , Fleurs/croissance et développement , Composants de gène , Analyse de profil d'expression de gènes , Séquençage nucléotidique à haut débit , Protéines nucléaires/génétique , Racines de plante/génétique , Réaction de polymérisation en chaine en temps réel , Protéines de répression/génétique , Plant/métabolisme
10.
Plant Cell ; 25(9): 3266-79, 2013 Sep.
Article de Anglais | MEDLINE | ID: mdl-24045022

RÉSUMÉ

The regulation of gene expression is crucial for an organism's development and response to stress, and an understanding of the evolution of gene expression is of fundamental importance to basic and applied biology. To improve this understanding, we conducted expression quantitative trait locus (eQTL) mapping in the Tsu-1 (Tsushima, Japan) × Kas-1 (Kashmir, India) recombinant inbred line population of Arabidopsis thaliana across soil drying treatments. We then used genome resequencing data to evaluate whether genomic features (promoter polymorphism, recombination rate, gene length, and gene density) are associated with genes responding to the environment (E) or with genes with genetic variation (G) in gene expression in the form of eQTLs. We identified thousands of genes that responded to soil drying and hundreds of main-effect eQTLs. However, we identified very few statistically significant eQTLs that interacted with the soil drying treatment (GxE eQTL). Analysis of genome resequencing data revealed associations of several genomic features with G and E genes. In general, E genes had lower promoter diversity and local recombination rates. By contrast, genes with eQTLs (G) had significantly greater promoter diversity and were located in genomic regions with higher recombination. These results suggest that genomic architecture may play an important a role in the evolution of gene expression.


Sujet(s)
Arabidopsis/génétique , Régulation de l'expression des gènes végétaux/génétique , Variation génétique/génétique , Génome végétal/génétique , Génomique , Locus de caractère quantitatif/génétique , Arabidopsis/physiologie , Cartographie chromosomique , Sécheresses , Environnement , Expression des gènes , Études d'associations génétiques , Phénotype , Régions promotrices (génétique)/génétique , Stress physiologique , Eau/physiologie
11.
Proc Natl Acad Sci U S A ; 110(17): 7074-9, 2013 Apr 23.
Article de Anglais | MEDLINE | ID: mdl-23569225

RÉSUMÉ

Peptide signaling presumably occupies a central role in plant development, yet only few concrete examples of receptor-ligand pairs that act in the context of specific differentiation processes have been described. Here we report that second-site null mutations in the Arabidopsis leucine-rich repeat receptor-like kinase gene barely any meristem 3 (BAM3) perfectly suppress the postembryonic root meristem growth defect and the associated perturbed protophloem development of the brevis radix (brx) mutant. The roots of bam3 mutants specifically resist growth inhibition by the CLAVATA3/ENDOSPERM SURROUNDING REGION 45 (CLE45) peptide ligand. WT plants transformed with a construct for ectopic overexpression of CLE45 could not be recovered, with the exception of a single severely dwarfed and sterile plant that eventually died. By contrast, we obtained numerous transgenic bam3 mutants transformed with the same construct. These transgenic plants displayed a WT phenotype, however, supporting the notion that CLE45 is the likely BAM3 ligand. The results correlate with the observation that external CLE45 application represses protophloem differentiation in WT, but not in bam3 mutants. BAM3, BRX, and CLE45 are expressed in a similar spatiotemporal trend along the developing protophloem, up to the end of the transition zone. Induction of BAM3 expression upon CLE45 application, ectopic overexpression of BAM3 in brx root meristems, and laser ablation experiments suggest that intertwined regulatory activity of BRX, BAM3, and CLE45 could be involved in the proper transition of protophloem cells from proliferation to differentiation, thereby impinging on postembryonic growth capacity of the root meristem.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/croissance et développement , Différenciation cellulaire/effets des médicaments et des substances chimiques , Protéines membranaires/métabolisme , Phloème/cytologie , Coiffe racinaire/effets des médicaments et des substances chimiques , Protein-Serine-Threonine Kinases/métabolisme , Protéines d'Arabidopsis/physiologie , Séquence nucléotidique , Différenciation cellulaire/physiologie , Génome végétal/génétique , Protéines membranaires/physiologie , Microscopie confocale , Données de séquences moléculaires , Mutagenèse , Oligonucléotides/génétique , Phloème/physiologie , Coiffe racinaire/croissance et développement , Analyse de séquence d'ADN
12.
PLoS Genet ; 8(4): e1002652, 2012.
Article de Anglais | MEDLINE | ID: mdl-22511887

RÉSUMÉ

Eukaryotic mRNA transcription and turnover is controlled by an enzymatic machinery that includes RNA polymerase II and the 3' to 5' exosome. The activity of these protein complexes is modulated by additional factors, such as the nuclear RNA polymerase II-associated factor 1 (Paf1c) and the cytoplasmic Superkiller (SKI) complex, respectively. Their components are conserved across uni- as well as multi-cellular organisms, including yeast, Arabidopsis, and humans. Among them, SKI8 displays multiple facets on top of its cytoplasmic role in the SKI complex. For instance, nuclear yeast ScSKI8 has an additional function in meiotic recombination, whereas nuclear human hSKI8 (unlike ScSKI8) associates with Paf1c. The Arabidopsis SKI8 homolog VERNALIZATION INDEPENDENT 3 (VIP3) has been found in Paf1c as well; however, whether it also has a role in the SKI complex remains obscure so far. We found that transgenic VIP3-GFP, which complements a novel vip3 mutant allele, localizes to both nucleus and cytoplasm. Consistently, biochemical analyses suggest that VIP3-GFP associates with the SKI complex. A role of VIP3 in the turnover of nuclear encoded mRNAs is supported by random-primed RNA sequencing of wild-type and vip3 seedlings, which indicates mRNA stabilization in vip3. Another SKI subunit homolog mutant, ski2, displays a dwarf phenotype similar to vip3. However, unlike vip3, it displays neither early flowering nor flower development phenotypes, suggesting that the latter reflect VIP3's role in Paf1c. Surprisingly then, transgenic ScSKI8 rescued all aspects of the vip3 phenotype, suggesting that the dual role of SKI8 depends on species-specific cellular context.


Sujet(s)
Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , RNA polymerase II , ARN messager , Arabidopsis/génétique , Fleurs/génétique , Fleurs/croissance et développement , Séquençage nucléotidique à haut débit , Humains , Méiose/génétique , Mutation , Protéines nucléaires/génétique , Phénotype , Végétaux génétiquement modifiés , RNA polymerase II/génétique , RNA polymerase II/métabolisme , ARN messager/génétique , ARN messager/métabolisme , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Spécificité d'espèce
13.
Curr Biol ; 21(22): 1918-23, 2011 Nov 22.
Article de Anglais | MEDLINE | ID: mdl-22079112

RÉSUMÉ

In the Arabidopsis root meristem, polar auxin transport creates a transcriptional auxin response gradient that peaks at the stem cell niche and gradually decreases as stem cell daughters divide and differentiate [1-3]. The amplitude and extent of this gradient are essential for both stem cell maintenance and root meristem growth [4, 5]. To investigate why expression of some auxin-responsive genes, such as the essential root meristem growth regulator BREVIS RADIX (BRX) [6], deviates from this gradient, we combined experimental and computational approaches. We created cellular-level root meristem models that accurately reproduce distribution of nuclear auxin activity and allow dynamic modeling of regulatory processes to guide experimentation. Expression profiles deviating from the auxin gradient could only be modeled after intersection of auxin activity with the observed differential endocytosis pattern and positive autoregulatory feedback through plasma-membrane-to-nucleus transfer of BRX. Because BRX is required for expression of certain auxin response factor targets, our data suggest a cell-type-specific endocytosis-dependent input into transcriptional auxin perception. This input sustains expression of a subset of auxin-responsive genes across the root meristem's division and transition zones and is essential for meristem growth. Thus, the endocytosis pattern provides specific positional information to modulate auxin response.


Sujet(s)
Arabidopsis/croissance et développement , Endocytose , Acides indolacétiques/métabolisme , Méristème/croissance et développement , Facteur de croissance végétal/métabolisme , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Membrane cellulaire/métabolisme , Noyau de la cellule/métabolisme , Simulation numérique , Régulation de l'expression des gènes végétaux , Méristème/métabolisme , Modèles biologiques , Racines de plante/croissance et développement , Racines de plante/métabolisme
14.
Proc Natl Acad Sci U S A ; 107(52): 22734-9, 2010 Dec 28.
Article de Anglais | MEDLINE | ID: mdl-21149702

RÉSUMÉ

A central question in developmental biology is how multicellular organisms coordinate cell division and differentiation to determine organ size. In Arabidopsis roots, this balance is controlled by cytokinin-induced expression of SHORT HYPOCOTYL 2 (SHY2) in the so-called transition zone of the meristem, where SHY2 negatively regulates auxin response factors (ARFs) by protein-protein interaction. The resulting down-regulation of PIN-FORMED (PIN) auxin efflux carriers is considered the key event in promoting differentiation of meristematic cells. Here we show that this regulation involves additional, intermediary factors and is spatio-temporally constrained. We found that the described cytokinin-auxin crosstalk antagonizes BREVIS RADIX (BRX) activity in the developing protophloem. BRX is an auxin-responsive target of the prototypical ARF MONOPTEROS (MP), a key promoter of vascular development, and transiently enhances PIN3 expression to promote meristem growth in young roots. At later stages, cytokinin induction of SHY2 in the vascular transition zone restricts BRX expression to down-regulate PIN3 and thus limit meristem growth. Interestingly, proper SHY2 expression requires BRX, which could reflect feedback on the auxin responsiveness of SHY2 because BRX protein can directly interact with MP, likely acting as a cofactor. Thus, cross-regulatory antagonism between BRX and SHY2 could determine ARF activity in the protophloem. Our data suggest a model in which the regulatory interactions favor BRX expression in the early proximal meristem and SHY2 prevails because of supplementary cytokinin induction in the later distal meristem. The complex equilibrium of this regulatory module might represent a universal switch in the transition toward differentiation in various developmental contexts.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/métabolisme , Méristème/métabolisme , Racines de plante/métabolisme , Arabidopsis/génétique , Arabidopsis/croissance et développement , Protéines d'Arabidopsis/génétique , Technique de Western , Cytokinine/pharmacologie , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Régulation de l'expression des gènes au cours du développement/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Glucuronidase/génétique , Glucuronidase/métabolisme , Protéines à fluorescence verte/génétique , Protéines à fluorescence verte/métabolisme , Acides indolacétiques/pharmacologie , Méristème/génétique , Méristème/croissance et développement , Microscopie confocale , Mutation , Protéines nucléaires/génétique , Protéines nucléaires/métabolisme , Facteur de croissance végétal/pharmacologie , Racines de plante/génétique , Racines de plante/croissance et développement , Végétaux génétiquement modifiés , RT-PCR , Facteurs temps , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
15.
Genome Biol ; 11(1): R4, 2010 Jan 12.
Article de Anglais | MEDLINE | ID: mdl-20067627

RÉSUMÉ

Identification of small polymorphisms from next generation sequencing short read data is relatively easy, but detection of larger deletions is less straightforward. Here, we analyzed four divergent Arabidopsis accessions and found that intersection of absent short read coverage with weak tiling array hybridization signal reliably flags deletions. Interestingly, individual deletions were frequently observed in two or more of the accessions examined, suggesting that variation in gene content partly reflects a common history of deletion events.


Sujet(s)
Arabidopsis/génétique , Délétion de gène , Génome végétal , Algorithmes , Biochimie/méthodes , Biologie informatique/méthodes , ADN des plantes/génétique , Bases de données génétiques , Gènes de plante , Variation génétique , Modèles biologiques , Modèles génétiques , Hybridation d'acides nucléiques , ARN messager/métabolisme
16.
F1000 Biol Rep ; 2: 85, 2010 Dec 08.
Article de Anglais | MEDLINE | ID: mdl-21283599

RÉSUMÉ

Ultra-high-throughput sequencing (UHTS) techniques are evolving rapidly and may soon become an affordable and routine tool for sequencing plant DNA, even in smaller plant biology labs. Here we review recent insights into intraspecific genome variation gained from UHTS, which offers a glimpse of the rather unexpected levels of structural variability among Arabidopsis thaliana accessions. The challenges that will need to be addressed to efficiently assemble and exploit this information are also discussed.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...