Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
ACS Appl Mater Interfaces ; 16(32): 42176-42188, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39087237

RÉSUMÉ

In the quest for sustainable hydrogen production via water electrolysis, the development of high-performance, noble-metal-free catalytic systems is highly desired. Herein, we proposed an innovative strategy for the development of an electrocatalyst by refining the surface characteristics of a NiFeP alloy through microbiological techniques and subsequent enrichment of active sites by tailoring 3D hierarchical flower-like structures with intact and interconnected two-dimensional (2D) Co3O4. The resultant 3D Co3O4@NiFeP-5/24h has a porous structure comprised of intercrossed nanoparticles covering the entirety of the catalytic surface. This design ensures comprehensive electrolyte ion penetration and facilitates the release of gas bubbles while reducing bubble adhesion rates. Remarkably, the Co3O4@NiFeP-5/24h electrode demonstrates superior hydrogen evolution (HER) performance in an alkaline medium, characterized by its high stability, low overpotential (106 mV at a current density of 10 mA cm-2), and reduced Tafel slope (98 mV dec-1). Besides, the minimized interfacial contact resistance among the phases of electrode and electrolyte emphasizes the high HER performance of the 3D Co3O4@NiFeP-5/24h electrode. The innovative design and fabrication strategy employed herein holds significant potential for advancing the field of water-splitting electrocatalysis, offering a promising path toward the rational design and development of noble-metal-free electrocatalysts.

2.
ACS Appl Mater Interfaces ; 16(31): 40948-40963, 2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39074332

RÉSUMÉ

Designing and developing noble-metal-free catalysts are of current interest in clean hydrogen generation via water splitting. As carbonaceous species are ideal choices as templates for various electrocatalysis, an improved synthetic route and an in-depth understanding of their electrochemical performance are essential. Herein, we have investigated the catalytic performance of rGO-encapsulated Mn and V mixed oxide hybrid structures (MVG) on a NiFeP matrix, focusing on their potential for catalyzing hydrogen evolution in an alkaline environment. The hierarchical MVG hollow microspheres hybrids are synthesized via a simple one-step in situ solvothermal method and MVG/NiFeP coatings are developed by facile electroless plating technique. As evidenced from the X-ray photoelectron spectroscopy, the multiple redox active sites in the 3d-band of Mn and V in MVG hybrid structural coatings serve as electron pumps, and rGO facilitates electronic conductions during catalytic reactions. The modulated electronic structure and strong synergistic effects between NiFeP and MVG facilitate rapid electron transfer kinetics, and the hybrids demonstrate superior HER performance. Consequently, the structural hybrid coatings possess an enhanced electronic conducting path (lower RCT = 545.3 Ω) and large ECSA values with a lower overpotential of 85 mV at 10 mA cm-2 and a reduced Tafel slope of 64.1 mV dec-1 with Volmer-Heyrovsky mechanism in alkaline media.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE