Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Adv ; 9(32): eadg9781, 2023 08 11.
Article de Anglais | MEDLINE | ID: mdl-37566656

RÉSUMÉ

Vascularization is driven by morphogen signals and mechanical cues that coordinately regulate cellular force generation, migration, and shape change to sculpt the developing vascular network. However, it remains unclear whether developing vasculature actively regulates its own mechanical properties to achieve effective vascularization. We engineered tissue constructs containing endothelial cells and fibroblasts to investigate the mechanics of vascularization. Tissue stiffness increases during vascular morphogenesis resulting from emergent interactions between endothelial cells, fibroblasts, and ECM and correlates with enhanced vascular function. Contractile cellular forces are key to emergent tissue stiffening and synergize with ECM mechanical properties to modulate the mechanics of vascularization. Emergent tissue stiffening and vascular function rely on mechanotransduction signaling within fibroblasts, mediated by YAP1. Mouse embryos lacking YAP1 in fibroblasts exhibit both reduced tissue stiffness and develop lethal vascular defects. Translating our findings through biology-inspired vascular tissue engineering approaches will have substantial implications in regenerative medicine.


Sujet(s)
Cellules endothéliales , Mécanotransduction cellulaire , Souris , Animaux , Mécanotransduction cellulaire/physiologie , Ingénierie tissulaire/méthodes , Morphogenèse , Différenciation cellulaire , Matrice extracellulaire
2.
Life Sci Alliance ; 4(3)2021 03.
Article de Anglais | MEDLINE | ID: mdl-33504622

RÉSUMÉ

Diverse extracellular matrix patterns are observed in both normal and pathological tissue. However, most current tools for quantitative analysis focus on a single aspect of matrix patterning. Thus, an automated pipeline that simultaneously quantifies a broad range of metrics and enables a comprehensive description of varied matrix patterns is needed. To this end, we have developed an ImageJ plugin called TWOMBLI, which stands for The Workflow Of Matrix BioLogy Informatics. This pipeline includes metrics of matrix alignment, length, branching, end points, gaps, fractal dimension, curvature, and the distribution of fibre thickness. TWOMBLI is designed to be quick, versatile and easy-to-use particularly for non-computational scientists. TWOMBLI can be downloaded from https://github.com/wershofe/TWOMBLI together with detailed documentation and tutorial video. Although developed with the extracellular matrix in mind, TWOMBLI is versatile and can be applied to vascular and cytoskeletal networks. Here we present an overview of the pipeline together with examples from a wide range of contexts where matrix patterns are generated.


Sujet(s)
Matrice extracellulaire/anatomopathologie , Traitement d'image par ordinateur/méthodes , Algorithmes , Animaux , Matrice extracellulaire/métabolisme , Humains , Logiciel , Flux de travaux
3.
Nat Commun ; 9(1): 3781, 2018 09 12.
Article de Anglais | MEDLINE | ID: mdl-30209298

RÉSUMÉ

In the original version of this Article, financial support was not fully acknowledged. The PDF and HTML versions of the Article have now been corrected to include the following: "This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001144), the UK Medical Research Council (FC001144), and the Wellcome Trust (FC001144)." https://doi.org/10.1038/s41467-018-05370-7 .

4.
Nat Commun ; 9(1): 3115, 2018 08 06.
Article de Anglais | MEDLINE | ID: mdl-30082728

RÉSUMÉ

Yes-associated protein (YAP), the downstream transducer of the Hippo pathway, is a key regulator of organ size, differentiation and tumorigenesis. To uncover Hippo-independent YAP regulators, we performed a genome-wide CRISPR screen that identifies the transcriptional repressor protein Trichorhinophalangeal Syndrome 1 (TRPS1) as a potent repressor of YAP-dependent transactivation. We show that TRPS1 globally regulates YAP-dependent transcription by binding to a large set of joint genomic sites, mainly enhancers. TRPS1 represses YAP-dependent function by recruiting a spectrum of corepressor complexes to joint sites. Loss of TRPS1 leads to activation of enhancers due to increased H3K27 acetylation and an altered promoter-enhancer interaction landscape. TRPS1 is commonly amplified in breast cancer, which suggests that restrained YAP activity favours tumour growth. High TRPS1 activity is associated with decreased YAP activity and leads to decreased frequency of tumour-infiltrating immune cells. Our study uncovers TRPS1 as an epigenetic regulator of YAP activity in breast cancer.


Sujet(s)
Tumeurs du sein/génétique , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Régulation de l'expression des gènes tumoraux , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Acétylation , Animaux , Sites de fixation , Tumeurs du sein/métabolisme , Systèmes CRISPR-Cas , Lignée cellulaire tumorale , Chromatine/métabolisme , Éléments activateurs (génétique) , Épigenèse génétique , Femelle , Génomique , Cellules HEK293 , Humains , Cellules MCF-7 , Souris , Souris de lignée BALB C , Transplantation tumorale , Régions promotrices (génétique) , Petit ARN interférent/métabolisme , Protéines de répression , Analyse sur puce à tissus , Activation de la transcription
5.
EMBO J ; 37(17)2018 09 03.
Article de Anglais | MEDLINE | ID: mdl-30037824

RÉSUMÉ

The mammalian Hippo signaling pathway, through its effectors YAP and TAZ, coerces epithelial progenitor cell expansion for appropriate tissue development or regeneration upon damage. Its ability to drive rapid tissue growth explains why many oncogenic events frequently exploit this pathway to promote cancer phenotypes. Indeed, several tumor types including basal cell carcinoma (BCC) show genetic aberrations in the Hippo (or YAP/TAZ) regulators. Here, we uncover that while YAP is dispensable for homeostatic epidermal regeneration, it is required for BCC development. Our clonal analyses further demonstrate that the few emerging Yap-null dysplasia have lower fitness and thus are diminished as they progress to invasive BCC Mechanistically, YAP depletion in BCC tumors leads to effective impairment of the JNK-JUN signaling, a well-established tumor-driving cascade. Importantly, in this context, YAP does not influence canonical Wnt or Hedgehog signaling. Overall, we reveal Hippo signaling as an independent promoter of BCC pathogenesis and thereby a viable target for drug-resistant BCC.


Sujet(s)
Protéines adaptatrices de la transduction du signal/métabolisme , Adénocarcinome/métabolisme , Résistance aux médicaments antinéoplasiques , Phosphoprotéines/métabolisme , Protéines proto-oncogènes c-jun/métabolisme , Facteur de transcription AP-1/métabolisme , Voie de signalisation Wnt , Protéines adaptatrices de la transduction du signal/génétique , Adénocarcinome/génétique , Adénocarcinome/anatomopathologie , Animaux , Protéines du cycle cellulaire , MAP Kinase Kinase 4/génétique , MAP Kinase Kinase 4/métabolisme , Souris , Souris knockout , Phosphoprotéines/génétique , Protéines proto-oncogènes c-jun/génétique , Facteur de transcription AP-1/génétique , Protéines de signalisation YAP
6.
Cell ; 156(5): 893-906, 2014 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-24581491

RÉSUMÉ

Global downregulation of microRNAs (miRNAs) is commonly observed in human cancers and can have a causative role in tumorigenesis. The mechanisms responsible for this phenomenon remain poorly understood. Here, we show that YAP, the downstream target of the tumor-suppressive Hippo-signaling pathway regulates miRNA biogenesis in a cell-density-dependent manner. At low cell density, nuclear YAP binds and sequesters p72 (DDX17), a regulatory component of the miRNA-processing machinery. At high cell density, Hippo-mediated cytoplasmic retention of YAP facilitates p72 association with Microprocessor and binding to a specific sequence motif in pri-miRNAs. Inactivation of the Hippo pathway or expression of constitutively active YAP causes widespread miRNA suppression in cells and tumors and a corresponding posttranscriptional induction of MYC expression. Thus, the Hippo pathway links contact-inhibition regulation to miRNA biogenesis and may be responsible for the widespread miRNA repression observed in cancer.


Sujet(s)
microARN/métabolisme , Tumeurs/génétique , Numération cellulaire , Protéines du cycle cellulaire , Lignée cellulaire , DEAD-box RNA helicases/métabolisme , Voie de signalisation Hippo , Humains , microARN/génétique , Protéines nucléaires/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Protéines proto-oncogènes c-myc/métabolisme , Transduction du signal , Facteurs de transcription/métabolisme , Transcriptome
7.
Nat Cell Biol ; 14(12): 1322-9, 2012 Dec.
Article de Anglais | MEDLINE | ID: mdl-23143395

RÉSUMÉ

Organ development is a complex process governed by the interplay of several signalling pathways that have critical functions in the regulation of cell growth and proliferation. Over the past years, the Hippo pathway has emerged as a key regulator of organ size. Perturbation of this pathway has been shown to play important roles in tumorigenesis. YAP, the main downstream target of the mammalian Hippo pathway, promotes organ growth, yet the underlying molecular mechanism of this regulation remains unclear. Here we provide evidence that YAP activates the mammalian target of rapamycin (mTOR), a major regulator of cell growth. We have identified the tumour suppressor PTEN, an upstream negative regulator of mTOR, as a critical mediator of YAP in mTOR regulation. We demonstrate that YAP downregulates PTEN by inducing miR-29 to inhibit PTEN translation. Last, we show that PI(3)K­mTOR is a pathway modulated by YAP to regulate cell size, tissue growth and hyperplasia. Our studies reveal a functional link between Hippo and PI(3)K­mTOR, providing a molecular basis for the coordination of these two pathways in organ size regulation.


Sujet(s)
Protéines adaptatrices de la transduction du signal/métabolisme , Facteur de croissance des hépatocytes/métabolisme , microARN/métabolisme , Phosphoprotéines/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Protéines proto-oncogènes/métabolisme , Protéines adaptatrices de la transduction du signal/génétique , Animaux , Protéines du cycle cellulaire , Lignée cellulaire , Immunoprécipitation de la chromatine , 4H-1-Benzopyran-4-ones/pharmacologie , Cytométrie en flux , Facteur de croissance des hépatocytes/génétique , Séquençage nucléotidique à haut débit , Humains , Foie/effets des médicaments et des substances chimiques , Foie/métabolisme , Mâle , Souris , Souris knockout , Souris transgéniques , microARN/génétique , Morpholines/pharmacologie , Phosphohydrolase PTEN/génétique , Phosphohydrolase PTEN/métabolisme , Phosphoprotéines/génétique , Protein-Serine-Threonine Kinases/génétique , Protéines proto-oncogènes/génétique , Réaction de polymérisation en chaine en temps réel , Serine-threonine kinase-3 , Protéines de signalisation YAP
8.
Proc Natl Acad Sci U S A ; 109(7): 2394-9, 2012 Feb 14.
Article de Anglais | MEDLINE | ID: mdl-22308401

RÉSUMÉ

Heart growth is tightly controlled so that the heart reaches a predetermined size. Fetal heart growth occurs through cardiomyocyte proliferation, whereas postnatal heart growth involves primarily physiological cardiomyocyte hypertrophy. The Hippo kinase cascade is an important regulator of organ growth. A major target of this kinase cascade is YAP1, a transcriptional coactivator that is inactivated by Hippo kinase activity. Here, we used both genetic gain and loss of Yap1 function to investigate its role in regulating proliferative and physiologic hypertrophic heart growth. Fetal Yap1 inactivation caused marked, lethal myocardial hypoplasia and decreased cardiomyocyte proliferation, whereas fetal activation of YAP1 stimulated cardiomyocyte proliferation. Enhanced proliferation was particularly dramatic in trabecular cardiomyocytes that normally exit from the cell cycle. Remarkably, YAP1 activation was sufficient to stimulate proliferation of postnatal cardiomyocytes, both in culture and in the intact heart. A dominant negative peptide that blocked YAP1 binding to TEAD transcription factors inhibited YAP1 proliferative activity, indicating that this activity requires YAP1-TEAD interaction. Although Yap1 was a critical regulator of cardiomyocyte proliferation, it did not influence physiological hypertrophic growth of cardiomyocytes, because postnatal Yap1 gain or loss of function did not significantly alter cardiomyocyte size. These studies demonstrate that Yap1 is a crucial regulator of cardiomyocyte proliferation, cardiac morphogenesis, and myocardial trabeculation. Activation of Yap1 in postnatal cardiomyocytes may be a useful strategy to stimulate cardiomyocyte expansion in therapeutic myocardial regeneration.


Sujet(s)
Protéines régulatrices de l'apoptose/métabolisme , Cardiomégalie/métabolisme , Coeur/croissance et développement , Myocarde/cytologie , Protein-Serine-Threonine Kinases/métabolisme , Transduction du signal , Animaux , Gènes cdc , Rats , Serine-threonine kinase-3 , Protéines de signalisation YAP
9.
Cell ; 144(5): 782-95, 2011 Mar 04.
Article de Anglais | MEDLINE | ID: mdl-21376238

RÉSUMÉ

During development and regeneration, proliferation of tissue-specific stem cells is tightly controlled to produce organs of a predetermined size. The molecular determinants of this process remain poorly understood. Here, we investigate the function of Yap1, the transcriptional effector of the Hippo signaling pathway, in skin biology. Using gain- and loss-of-function studies, we show that Yap1 is a critical modulator of epidermal stem cell proliferation and tissue expansion. Yap1 mediates this effect through interaction with TEAD transcription factors. Additionally, our studies reveal that α-catenin, a molecule previously implicated in tumor suppression and cell density sensing in the skin, is an upstream negative regulator of Yap1. α-catenin controls Yap1 activity and phosphorylation by modulating its interaction with 14-3-3 and the PP2A phosphatase. Together, these data identify Yap1 as a determinant of the proliferative capacity of epidermal stem cells and as an important effector of a "crowd control" molecular circuitry in mammalian skin.


Sujet(s)
Protéines adaptatrices de la transduction du signal/métabolisme , Prolifération cellulaire , Cellules épidermiques , Phosphoprotéines/métabolisme , alpha-Caténine/métabolisme , Protéines 14-3-3/métabolisme , Animaux , Protéines du cycle cellulaire , Lignée cellulaire , Épiderme/métabolisme , Souris , Protéines de signalisation YAP
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...