Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 50
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Phys Rev Lett ; 124(14): 146802, 2020 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-32338960

RÉSUMÉ

Density-functional theory is used to explore the Si(553)-Au surface dynamics. Our study (i) reveals a complex two-stage order-disorder phase transition where with rising temperature first the ×3 order along the Si step edges and, subsequently, the ×2 order of the Au chains is lost, (ii) identifies the transient modification of the electron chemical potential during soft Au chain vibrations as instrumental for disorder at the step edge, and (iii) shows that the transition leads to a self-doping of the Si dangling-bond wire at the step edge. The calculations are corroborated by Raman measurements of surface phonon modes and explain previous electron diffraction, scanning tunneling microscopy, and surface transport data.

2.
J Phys Condens Matter ; 31(38): 385401, 2019 Sep 25.
Article de Anglais | MEDLINE | ID: mdl-31189148

RÉSUMÉ

The atomic geometry and energetics of oxygen and potassium vacancies in potassium titanyl phosphate (KTP) as well as their electronic and optical properties are studied within density-functional theory in dependence of their charge state. Oxygen vacancies formed between Ti and P are characterized by a negative-U behavior. Their neutral charge state is favored for Fermi levels near the conduction band and gives rise to a defect level in the band gap, which leads to an additional optical absorption peak. In contrast, the two-fold positive charge state, stable for low and intermediate values of the Fermi level, modifies the KTP optical response only slightly. Oxygen vacancies formed between two Ti atoms are two-fold positively charged, while potassium vacancies are negatively charged irrespective of the Fermi level position. In both these cases, the KTP optical response is essentially not affected.

3.
Science ; 362(6416): 821-825, 2018 11 16.
Article de Anglais | MEDLINE | ID: mdl-30442808

RÉSUMÉ

Ultrafast nonequilibrium dynamics offer a route to study the microscopic interactions that govern macroscopic behavior. In particular, photoinduced phase transitions (PIPTs) in solids provide a test case for how forces, and the resulting atomic motion along a reaction coordinate, originate from a nonequilibrium population of excited electronic states. Using femtosecond photoemission, we obtain access to the transient electronic structure during an ultrafast PIPT in a model system: indium nanowires on a silicon(111) surface. We uncover a detailed reaction pathway, allowing a direct comparison with the dynamics predicted by ab initio simulations. This further reveals the crucial role played by localized photoholes in shaping the potential energy landscape and enables a combined momentum- and real-space description of PIPTs, including the ultrafast formation of chemical bonds.

4.
Nat Commun ; 9(1): 2890, 2018 07 23.
Article de Anglais | MEDLINE | ID: mdl-30038302

RÉSUMÉ

Many properties of solids result from the fact that in a periodic crystal structure, electronic wave functions are delocalized over many lattice sites. Electrons should become increasingly localized when a strong electric field is applied. So far, this Wannier-Stark regime has been reached only in artificial superlattices. Here we show that extremely transient bias over the few-femtosecond period of phase-stable mid-infrared pulses may localize electrons even in a bulk semiconductor like GaAs. The complicated band structure of a three-dimensional crystal leads to a strong blurring of field-dependent steps in the Wannier-Stark ladder. Only the central step emerges strongly in interband electro-absorption because its energetic position is dictated by the electronic structure at an atomic level and therefore insensitive to the external bias. In this way, we demonstrate an extreme state of matter with potential applications due to e.g., its giant optical non-linearity or extremely high chemical reactivity.

5.
Chemistry ; 24(26): 6787-6797, 2018 May 07.
Article de Anglais | MEDLINE | ID: mdl-29493819

RÉSUMÉ

We demonstrate here that theory-assisted near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy enables the site-sensitive monitoring of on-surface chemical reactions, thus, providing information not accessible by other techniques. As a prototype example, we have used free-base 5,10,15-tris(pentafluorophenyl)corroles (3H-TpFPC) adsorbed on Ag(111) and present a detailed investigation of the angle-dependent NEXAFS of this molecular species as well as of their thermally induced derivatives. For this, we have recorded experimental C and N K-edge NEXAFS spectra and interpret them based on XAS cross-section calculations by using a continuous fraction approach and core-hole including multiprojector PAW pseudopotentials within DFT. We have characterized the as-deposited low temperature (200 K) phase and unraveled the subsequent changes induced by dehydrogenation (at 330 K) and ring-closure reactions (at 430 K). By exemplarily obtaining profound insight into the on-surface chemistry of free-base corrolic species adsorbed on a noble metal this work highlights how angle-dependent XAS combined with accurate theoretical modeling can serve for the investigation of on-surface reactions, whereby even highly similar molecular structures, such as tautomers and isomers, can be distinguished.

6.
J Phys Condens Matter ; 29(21): 215702, 2017 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-28374685

RÉSUMÉ

The electronic band structures of hexagonal ZnO and cubic ZnS, ZnSe, and ZnTe compounds are determined within hybrid-density-functional theory and quasiparticle calculations. It is found that the band-edge energies calculated on the [Formula: see text] (Zn chalcogenides) or GW (ZnO) level of theory agree well with experiment, while fully self-consistent QSGW calculations are required for the correct description of the Zn 3d bands. The quasiparticle band structures are used to calculate the linear response and second-harmonic-generation (SHG) spectra of the Zn-VI compounds. Excitonic effects in the optical absorption are accounted for within the Bethe-Salpeter approach. The calculated spectra are discussed in the context of previous experimental data and present SHG measurements for ZnO.

7.
Nature ; 544(7649): 207-211, 2017 04 13.
Article de Anglais | MEDLINE | ID: mdl-28355177

RÉSUMÉ

Transient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds. In contrast, experiments at surfaces and on single atomic layers such as graphene report timescales of structural changes that are orders of magnitude longer. This raises the question of whether the structural response of low-dimensional materials to femtosecond laser excitation is, in general, limited. Here we show that a photo-induced transition from the low- to high-symmetry state of a charge density wave in atomic indium (In) wires supported by a silicon (Si) surface takes place within 350 femtoseconds. The optical excitation breaks and creates In-In bonds, leading to the non-thermal excitation of soft phonon modes, and drives the structural transition in the limit of critically damped nuclear motion through coupling of these soft phonon modes to a manifold of surface and interface phonons that arise from the symmetry breaking at the silicon surface. This finding demonstrates that carefully tuned electronic excitations can create non-equilibrium potential energy surfaces that drive structural dynamics at interfaces in the quantum limit (that is, in a regime in which the nuclear motion is directed and deterministic). This technique could potentially be used to tune the dynamic response of a solid to optical excitation, and has widespread potential application, for example in ultrafast detectors.

8.
Phys Chem Chem Phys ; 18(48): 32891-32902, 2016 Dec 07.
Article de Anglais | MEDLINE | ID: mdl-27883125

RÉSUMÉ

We report a combined experiment-theory study on low energy vibrational modes in fluorescence spectra of perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA) molecules. Using very low coverages, isolated molecules were adsorbed on terrace sites or at sites located at residual steps on (100) oriented alkali halide films (KCl and NaCl). The low energy modes couple to the optical transition only because the PTCDA molecule is geometrically distorted (C2v) upon adsorption on the surface; they would be absent for the parent planar (D2h) PTCDA molecule. The modes differ in number and energy for molecules adsorbed on regular terrace sites and molecules adsorbed at step edge sites. Modes appearing for step edge sites have the character of frustrated rotations. Their coupling to the optical transition is a consequence of the further reduced symmetry of the step edge sites. We find a larger number of vibrational modes on NaCl than on KCl. We explain this by the stronger electrostatic bonding of the PTCDA on NaCl compared to KCl. It causes the optical transition to induce stronger changes in the molecular coordinates, thus leading to larger Franck-Condon factors and thus stronger coupling. Our results demonstrate how optical spectroscopy can be used to gain information on adsorption sites of molecules at low surface concentrations.

9.
J Comput Chem ; 37(11): 1005-18, 2016 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-26804007

RÉSUMÉ

Density functional theory (DFT) calculations with localized as well as plane-wave basis functions are performed for the recently reported dicopper thiolate species Cu2 (NGuaS)2 Cl2 [NGuaS = 2-(1,1,3,3-tetramethylguanidino) benzenethiolate, C11 H16 N3 S] and its bromo derivative [Neuba et al., Angew. Chem. Int. Ed. 2012, 51, 1714.]. For both hybrid and semilocal functionals, the neutral complexes are found to have broken symmetry (BS) character, with electron paramagnetic resonance silent, antiferromagnetically coupled [Cu(2+) …Cu(2+) ] site in which the coupling is driven by super exchange interaction within the Cu2 S2 diamond core. The accurate theoretical description of the geometric structure, however, provides a major challenge for DFT: (i) the multideterminant character of the ground state wave function has to be covered by the BS approach. It requires (ii) metageneralized gradient approximations, that is hybrid functionals with an explicit dependence on the kinetic energy of the individual orbitals: In combination with a dispersion correction, the metafunctional TPSSh results in a CuCu distance close to the experimentally observed value of 2.7 Å. For the negative charge state of the complex, a mixed-valent [Cu(1.5+) …Cu(1.5+) ] electronic structure with a smaller CuCu distance of 2.6 Å is predicted, similar to the value of the CuA site of cytochrome c oxidase.


Sujet(s)
Complexes de coordination/composition chimique , Cuivre/composition chimique , Théorie quantique , Structure moléculaire
10.
J Phys Condens Matter ; 27(38): 385402, 2015 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-26337951

RÉSUMÉ

The vibrational properties of stoichiometric LiNbO3 are analyzed within density-functional perturbation theory in order to obtain the complete phonon dispersion of the material. The phonon density of states of the ferroelectric (paraelectric) phase shows two (one) distinct band gaps separating the high-frequency (∼800 cm(-1)) optical branches from the continuum of acoustic and lower optical phonon states. This result leads to specific heat capacites in close agreement with experimental measurements in the range 0-350 K and a Debye temperature of 574 K. The calculated zero-point renormalization of the electronic Kohn-Sham eigenvalues reveals a strong dependence on the phonon wave vectors, especially near [Formula: see text]. Integrated over all phonon modes, our results indicate a vibrational correction of the electronic band gap of 0.41 eV at 0 K, which is in excellent agreement with the extrapolated temperature-dependent measurements.

11.
J Phys Chem B ; 119(21): 6481-91, 2015 May 28.
Article de Anglais | MEDLINE | ID: mdl-25950143

RÉSUMÉ

The effect of structural imperfections as well as oxygen impurities on the quantum conductance of poly(3-hexylthiophene) is calculated from first-principles by solving the scattering problem for molecular structures obtained within density functional theory. It is shown that the conductivity of molecular crystals perpendicular to the polymer chains depends strongly on the stacking geometry and is roughly described within the Wentzel-Kramers-Brillouin approximation. Furthermore, it is found that local relaxation for twisted or bent polymer chains efficiently restores the conductance that drops substantially for sharp kinks with curvature radii smaller than 17 Å and rotations in excess of ∼60°. In contrast, isomer defects in the coupling along the chain direction are of minor importance for the intrachain transmission. Also, oxidation of the side chains as well as molecular sulfur barely changes the coherent transport properties, whereas oxidation of thiophene group carbon atoms drastically reduces the conductance.

12.
Phys Chem Chem Phys ; 17(14): 8776-83, 2015 Apr 14.
Article de Anglais | MEDLINE | ID: mdl-25739640

RÉSUMÉ

First-principles calculations were combined with scanning tunneling microscopy (STM) measurements to analyze the adsorption of diindenoperylene (DIP) molecules on Cu(111) surfaces. The influence of the substrate on the geometry of single adsorbed molecules, their diffusion barriers, as well as the role of step-edges and intermolecular interactions for molecular self-assembly and structure growth are studied. Long-range ordered arrangements of DIP molecules are found to be most favorable irrespective of the terrace width. Energetically less favored short-range order structures, however, are observed as well.

13.
J Phys Condens Matter ; 26(25): 253201, 2014 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-24848713

RÉSUMÉ

Atomic length-scale order characteristics of binary and ternary amorphous oxides are presented within the framework of ab initio theory. A combined numerically efficient density functional based tight-binding molecular dynamics and density functional theory approach is applied to model the amorphous (a) phases of SiO2 and TiO2 as well as the amorphous phase of atomically mixed TixSi1-xO2 hybrid-oxide alloys over the entire composition range. Short and mid-range order in the disordered material phases are characterized by bond length and bond-angle statistics, pair distribution function analysis, coordination number and coordination polyhedra statistics, as well as ring statistics. The present study provides fundamental insights into the order characteristics of the amorphous hybrid-oxide frameworks formed by versatile types of TiOn and SiOm coordination polyhedra. In a-SiO2 the fourfold crystal coordination of Si ions is almost completely preserved and the atomic structure is widely dominated by ring-like mid-range order characteristics. In contrast, the structural disorder of a-TiO2 arises from short-range disorder in the local coordination environment of the Ti ion. The coordination number analysis indicates a large amount of over and under-coordinated Ti ions (coordination defects) in a-TiO2. Aside from the ubiquitous distortions of the crystal-like coordinated polyhedra, even the basic coordination-polyhedra geometry type changes for a significant fraction of TiO6 units (geometry defects). The combined effects of topological and chemical disorder in a-TixSi1-xO2 alloys lead to a continuos increase in both the Si as well as the Ti coordination number with the chemical composition x. The important roles of intermediate fivefold coordination states of Ti and Si cations are highlighted for ternary a-TixSi1-xO2 as well as for binary a-TiO2. The continuous decrease in ring size with increasing Ti content reflects the progressive loss of mid-range order structure characteristics and the competing roles of network forming and network modifying SiOm and TiOn units in the mixed hybrid oxides.

15.
Phys Rev Lett ; 110(13): 136803, 2013 Mar 29.
Article de Anglais | MEDLINE | ID: mdl-23581355

RÉSUMÉ

Combining orientation dependent electrically detected magnetic resonance and g tensor calculations based on density functional theory we assign microscopic structures to paramagnetic states involved in spin-dependent recombination at the interface of hydrogenated amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction solar cells. We find that (i) the interface exhibits microscopic roughness, (ii) the electronic structure of the interface defects is mainly determined by c-Si, (iii) we identify the microscopic origin of the conduction band tail state in the a-Si:H layer, and (iv) present a detailed recombination mechanism.

16.
J Comput Chem ; 34(12): 1035-45, 2013 May 05.
Article de Anglais | MEDLINE | ID: mdl-23299568

RÉSUMÉ

Based on the equilibrium geometries of [Cu2(dbdmed)2O2](2+) and [Cu2(en)2O2](2+) obtained within density-functional theory, we investigate their molecular electronic structure and optical response. Thereby results from occupation-constrained as well as time-dependent DFT (ΔSCF and TDDFT) are compared with Green's function-based approaches within many-body perturbation theory such as the GW approximation (GWA) to the quasiparticle energies and the Bethe-Salpeter equation (BSE) approach to the optical absorption. Concerning the ground-state energies and geometries, no clear trend with respect to the amount of exact exchange in the DFT calculations is found, and a strong dependence on the basis sets is to be noted. They affect the energy difference between bis-µ-oxo and µ-η(2):η(2)-peroxo complexes by as much as 0.8 eV (18 kcal/mol). Even stronger, up to 5 eV is the influence of the exchange-correlation functional on the gap values obtained from the Kohn-Sham eigenvalues. Not only the value itself but also the trends observed upon the bis-µ-oxo to µ-η(2):η(2)-peroxo transition are affected. In contrast, excitation energies obtained from ΔSCF and TDDFT are comparatively robust with respect to the details of the calculations. Noteworthy, in particular, is the near quantitative agreement between TDDFT and GWA+BSE for the optical spectra of [Cu2(en)2O2](2+).


Sujet(s)
Complexes de coordination/composition chimique , Cuivre/composition chimique , Oxygène/composition chimique , Théorie quantique , Modèles moléculaires , Structure moléculaire
17.
Phys Rev Lett ; 109(20): 206402, 2012 Nov 16.
Article de Anglais | MEDLINE | ID: mdl-23215512

RÉSUMÉ

Combining electron paramagnetic resonance, density functional theory, and positron annihilation spectroscopy (PAS), we identify the nitrogen interstitial defect in GaN. The isolated interstitial is unstable and transforms into a split interstitial configuration (N-N)(N). It is generated by particle irradiation with an introduction rate of a primary defect, pins the Fermi level at E(C)-1.0 eV for high fluences, and anneals out at 400 °C. The associated defect, the nitrogen vacancy, is observed by PAS only in the initial stage of irradiation.

18.
J Phys Condens Matter ; 24(19): 195503, 2012 May 16.
Article de Anglais | MEDLINE | ID: mdl-22517072

RÉSUMÉ

In this study, we present a combined density functional theory and many-body perturbation theory study on the electronic and optical properties of TiO(2) brookite as well as the tetragonal phases rutile and anatase. The electronic structure and linear optical response have been calculated from the Kohn-Sham band structure applying (semi)local as well as nonlocal screened hybrid exchange-correlation density functionals. Single-particle excitations are treated within the GW approximation for independent quasiparticles. For optical response calculations, two-particle excitations have been included by solving the Bethe-Salpeter equation for Coulomb correlated electron-hole pairs. On this methodological basis, gap data and optical spectra for the three major phases of TiO(2) are provided. The common characteristics of brookite with the rutile and anatase phases, which have been discussed more comprehensively in the literature, are highlighted. Furthermore, the comparison of the present calculations with measured optical response data of rutile indicate that discrepancies discussed in numerous earlier studies are due to the measurements rather than related to an insufficient theoretical description.

19.
Phys Rev Lett ; 105(12): 126102, 2010 Sep 17.
Article de Anglais | MEDLINE | ID: mdl-20867660

RÉSUMÉ

Density functional theory calculations are performed to determine the mechanism and origin of the intensively debated (4 x 1)-(8 x 2) phase transition of the Si(111)-In nanowire array. The calculations (i) show the existence of soft phonon modes that transform the nanowire structure between the metallic In zigzag chains of the room-temperature phase and the insulating In hexagons formed at low temperature and (ii) demonstrate that the subtle balance between the energy lowering due to the hexagon formation and the larger vibrational entropy of the zigzag chains causes the phase transition.

20.
Phys Rev Lett ; 102(22): 226805, 2009 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-19658889

RÉSUMÉ

The anisotropic optical response of Si(111)-(4x1)/(8x2)-In in the midinfrared, where ab initio studies predict significant changes in the band structure between competing models of this important quasi-1D system, has been measured using infrared spectroscopic ellipsometry (IRSE) and reflection anisotropy spectroscopy (RAS). Both IRSE and RAS of the (8x2) phase show that the anisotropic Drude tail of the (4x1) phase is replaced by two peaks at 0.50 and 0.72 eV, which appear in ab initio optical response calculations for the hexagon model of the (8x2) structure, but not the trimer model.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...