Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Animal ; 18(7): 101211, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38935984

RÉSUMÉ

Feed efficiency is an important trait of dairy production. However, assessing feed efficiency is constrained by the associated cost and difficulty in measuring individual feed intake, especially on pastures. The objective of this study was to investigate short-term feed efficiency traits of herbage-fed dairy cows and screening of potential biomarkers (n = 238). Derived feed efficiency traits were ratio-based (i.e., feed conversion ratio (FCR) and N use efficiency (NUE)) or residual-based (i.e., residual feed intake (RFI), residual energy intake (REI), and residual N intake (RNI)). Thirty-eight Holstein and 16 Swiss Fleckvieh dairy cows underwent a 7-d measurement period during mid- and/or late-lactation. The experimental data (n = 100 measurement points) covered different lactational and herbage-fed system situations: mid-lactation grazing (n = 56), late-lactation grazing (n = 28), and late-lactation barn feeding (n = 16). During each measuring period, the individual herbage intake of each cow was estimated using the n-alkane marker technique. For each cow, biomarkers representing milk constituents (n = 109), animal characteristics (n = 13), behaviour, and activity (n = 46), breath emissions (n = 3), blood constituents (n = 35), surface, and rectal temperature (n = 29), hair cortisol (n = 1), and near-infrared (NIR) spectra of faeces and milk (n = 2) were obtained. The relationships between biomarkers and efficiency traits were statistically analysed with univariate linear regression and for NIR spectra using partial least squares regression with feed efficiency traits. The feed efficiency traits were interrelated with each other (r: -0.57 to -0.86 and 0.49-0.81). The biomarkers showed varying R2 values in explaining the variability of feed efficiency traits (FCR: 0.00-0.66, NUE: 0.00-0.74, RFI: 0.00-0.56, REI: 0.00-0.69, RNI: 0.00-0.89). Overall, the feed efficiency traits were best explained by NIR spectral characteristics of milk and faeces (R2: 0.25-0.89). Biomarkers show potential for predicting feed efficiency in herbage-fed dairy cows. NIR spectra data analysis of milk and faeces presents a promising method for estimating individual feed efficiency upon further validation of prediction models. Future applications will depend on the ability to improve the robustness of biomarkers to predict feed efficiency in a greater variety of environments (locations), managing conditions, feeding systems, production intensities, and other aspects.

2.
J Dairy Sci ; 102(4): 2985-2999, 2019 Apr.
Article de Anglais | MEDLINE | ID: mdl-30712935

RÉSUMÉ

Information about the individual herbage DMI (HDMI) of grazing dairy cows is important for an efficient use of pasture herbage as an animal feed with a range of benefits. Estimating HDMI, with its multifaceted influencing variables, is difficult but may be attempted using animal, performance, behavior, and feed variables. In our study, 2 types of approaches were explored: 1 for HDMI estimation under a global approach (GA), where all variables measured in the 4 underlying experiments were used for model development, and 1 for HDMI estimation in an approach without information about the amount of supplements fed in the barn (WSB). The accuracy of these models was assessed. The underlying data set was developed from 4 experiments with 52 GA and 50 WSB variables and one hundred thirty 7-d measurements. The experiments differed in pasture size, herbage allowance, pregrazing herbage mass, supplements fed in the barn, and sward composition. In all the experiments, cow behavioral characteristics were recorded using the RumiWatch system (Itin and Hoch GmbH, Liestal, Switzerland). Herbage intake was estimated by applying the n-alkane method. Finally, HDMI estimation models with a minimal relative prediction error of 11.1% for use under GA and 13.2% for use under WSB were developed. The variables retained for the GA model with the highest accuracy, determined through various selection steps, were herbage crude protein, chopped whole-plant corn silage intake in the barn, protein supplement or concentrate intake in the barn, body weight, milk yield, milk protein, milk lactose, lactation number, postgrazing herbage mass, and bite rate performed at pasture. Instead of the omitted amounts of feed intake in the barn and, due to the statistical procedure for model reduction, the unconsidered variables postgrazing herbage mass and bite rate performed at pasture, the WSB model with the highest accuracy retained additional variables. The additional variables were total eating chews performed at pasture and in the barn, total eating time performed at pasture, number of total prehension bites, number of prehension bites performed at pasture, and herbage ash concentration. Even though behavioral characteristics alone did not allow a sufficiently accurate individual HDMI estimation, their inclusion under WSB improved estimation accuracy and represented the most valid variables for the HDMI estimation under WSB. Under GA, the inclusion of behavioral characteristics in the HDMI estimation models did not reduce the root mean squared prediction error. Finally, further adaptation, as well as validation on a more comprehensive data set and the inclusion of variables excluded in this study such as body condition score or gestation, should be considered in the development of HDMI estimation models.


Sujet(s)
Aliment pour animaux , Bovins/physiologie , Régime alimentaire/médecine vétérinaire , Animaux , Comportement animal , Poids , Industrie laitière , Compléments alimentaires , Consommation alimentaire , Environnement , Femelle , Herbivorie , Lactation , Lactose/analyse , Lait/composition chimique , Protéines de lait , Ensilage , Suisse , Zea mays
3.
J Dairy Sci ; 101(3): 2463-2475, 2018 Mar.
Article de Anglais | MEDLINE | ID: mdl-29290426

RÉSUMÉ

Observation of ingestive and rumination behaviors of dairy cows may assist in detecting diseases, controlling reproductive status, and estimating intake. However, direct observation of cows on pasture is time consuming and can be difficult to realize. Consequently, different systems have been developed to automatically record behavioral characteristics; among them is the RumiWatch System (RWS; Itin and Hoch GmbH, Liestal, Switzerland). Until now, the RWS has not been thoroughly validated under grazing conditions. The aim of the current study was to validate the RWS, against direct observation, in measuring ingestive and rumination behaviors of dairy cows during grazing and supplementation in the barn. A further objective was to examine whether it is possible to refine the algorithm used by the evaluation software RumiWatch Converter 0.7.3.2 to improve the accuracy of the RWS. The data were collected from an experiment carried out with 18 lactating Holstein cows in a crossover block design including 3 treatments and 3 measuring periods. All cows grazed night and day, 19 h/d, and were either unsupplemented or supplemented, with chopped whole-plant corn silage, or chopped whole-plant corn silage mixed with a protein concentrate. During the measuring periods, cows were equipped with the RumiWatch Halter, and their ingestive and rumination behaviors were recorded concurrently by the RumiWatch Halter and by direct observation (690 × 10 min). Comparison of concurrently measured data shows that the RWS detected jaw movements reliably, but classification errors occurred. A low relative prediction error of ≤0.10 for the number of rumination boluses, rumination chews, and total eating chews was found. A high relative prediction error of >0.10 was found for the number of prehension bites and time spent in prehension and eating. Both converter versions performed equally well in differentiating ingestive and rumination behaviors when cows were supplemented in the barn or when grazing and supplementation activities were combined. For grazing cows, with no supplementation, more reliable results for the total number of eating chews, rumination chews, prehension bites, and time spent in these activities were obtained, by using the RumiWatch Converter 0.7.3.11. In light of these findings, further research is warranted to improve the accuracy of the RWS and to allow a differentiation between mastication chews and prehension bites while eating.


Sujet(s)
Bovins/physiologie , Comportement alimentaire , Mâchoire/physiologie , Mastication , Aliment pour animaux , Animaux , Compléments alimentaires , Consommation alimentaire/physiologie , Femelle , Lactation , Ensilage/analyse , Suisse , Zea mays
4.
Animal ; 11(7): 1163-1173, 2017 Jul.
Article de Anglais | MEDLINE | ID: mdl-27993181

RÉSUMÉ

As ruminants are able to digest fibre efficiently and assuming that competition for feed v. food use would intensify in the future, cereals and other field crops should primarily be destined to cover the dietary needs of humans and monogastric animals such as poultry and pigs. Farming systems with a reduced or absent concentrate supplementation, as postulated by organic agriculture associations, require adapted dairy cows. The aim of this experiment was to examine the impact of concentrate supplementation on milk production, grazing and rumination behaviour, feed intake, physical activity and blood traits with two Holstein-Friesian cow strains and to conclude the consequences for sustainable and organic farming. The experiment was a cross-over study and took place on an organic farm in Switzerland. In all, 12 Swiss Holstein-Friesian (HCH) cows and 12 New Zealand Holstein-Friesian (HNZ) cows, which were paired according to lactation number, days in milk and age for primiparous cows, were used. All cows grazed full time and were supplemented either with 6 kg/day of a commercial, organic cereal-grain mix or received no supplement. After an adaptation period of 21 days, a measurement period of 7 days followed, where milk yield and composition, pasture dry matter intake estimated with the n-alkane double-indicator technique, physical activity based on pedometer measurements, grazing behaviour recorded by automatic jaw movement recorder and blood samples were investigated. Non-supplemented cows had a lower milk yield and supplemented HCH cows produced more milk than supplemented HNZ cows. Grazing time and physical activity were greater for non-supplemented cows. Supplementation had no effect on rumination behaviour, but HNZ cows spent longer ruminating compared with HCH cows. Pasture dry matter intake decreased with the concentrate supplementation. Results of blood analysis did not indicate a strong negative energy balance for either non-supplemented or supplemented cows. Minor differences between cow strains in this short-term study indicated that both cow strains are equally suited for an organic pasture-based production system with no concentrate supplementation. Many factors such as milk yield potential, animal welfare and health, efficiency, grazing behaviour and social aspects influence the decision to supplement grazing dairy cows with concentrates.


Sujet(s)
Bovins/physiologie , Compléments alimentaires , Métabolisme énergétique , Comportement alimentaire , Lait/métabolisme , Animaux , Études croisées , Industrie laitière , Régime alimentaire/médecine vétérinaire , Consommation alimentaire , Femelle , Lactation , Agriculture biologique , Suisse
5.
J Dairy Sci ; 100(2): 1019-1036, 2017 Feb.
Article de Anglais | MEDLINE | ID: mdl-27939548

RÉSUMÉ

The objective of this study was to test whether diet selection of dairy cows under grazing conditions could be estimated using plant wax markers. Furthermore, differences between 2 cow strains and the effect of concentrate supplementation on plant species selection were investigated. The experiment was a study with a crossover design performed on an organic farm with 12 Swiss Holstein cows and 12 New Zealand Holstein cows. Both experimental periods consisted of a 21-d adaptation and a 7-d measurement period. All cows grazed full time in a rotational stocking system and received either no concentrate or 6 kg/d of a commercial cereal-grain mix. Representative herbage samples of each grazed paddock were taken and botanical composition of subsamples was manually determined. The average proportions of the plant species were 27.8% Lolium perenne, 6.1% Dactylis glomerata, 10.4% Trifolium repens, and 9.0% Taraxacum officinale. Other grass species were merged as "other grass" (38.2%) and other forb species as "other forbs" (8.5%). n-Alkanes, long-chain fatty acids, and long-chain alcohols (LCOH) were analyzed in the samples of plant species, concentrate, and feces from each cow. A linear discriminant analysis indicated that diet components were differentiated best with LCOH (96%) and worst with the combination of all marker groups together (12%). For each marker, the fecal marker recovery (FR) relative to dosed ytterbium was determined in 2 ways. Estimation of diet composition was performed with the software "EatWhat," and results were compared with botanical composition with the Aitchison distance. The results indicate that the diet composition of grazing dairy cows can be estimated using plant wax markers. Additionally, the calculation of FR led to mostly reliable results, yet this approach needs further validation. The most accurate estimation was achieved with the marker combination of n-alkanes and LCOH with a correction for FR. Less accurate estimations were achieved with long-chain fatty acids alone or in combination with n-alkanes. No difference relating to diet selection between the 2 cow strains was recorded, but supplemented cows apparently ingested higher proportions of T. repens than nonsupplemented cows. Awareness that supplementation influences selection behavior of grazing dairy cows may lead to adaptations in botanical composition of the pasture according to the demand of the animals.


Sujet(s)
Lactation , Lait , Aliment pour animaux , Animaux , Bovins , Régime alimentaire/médecine vétérinaire , Comportement alimentaire , Femelle , Lolium
6.
J Dairy Sci ; 97(5): 2789-99, 2014 May.
Article de Anglais | MEDLINE | ID: mdl-24630659

RÉSUMÉ

Until recently, measurements of energy expenditure (EE; herein defined as heat production) in respiration chambers did not account for the extra energy requirements of grazing dairy cows on pasture. As energy is first limiting in most pasture-based milk production systems, its efficient use is important. Therefore, the aim of the present study was to compare EE, which can be affected by differences in body weight (BW), body composition, grazing behavior, physical activity, and milk production level, in 2 Holstein cow strains. Twelve Swiss Holstein-Friesian (HCH; 616 kg of BW) and 12 New Zealand Holstein-Friesian (HNZ; 570 kg of BW) cows in the third stage of lactation were paired according to their stage of lactation and kept in a rotational, full-time grazing system without concentrate supplementation. After adaption, the daily milk yield, grass intake using the alkane double-indicator technique, nutrient digestibility, physical activity, and grazing behavior recorded by an automatic jaw movement recorder were investigated over 7d. Using the (13)C bicarbonate dilution technique in combination with an automatic blood sampling system, EE based on measured carbon dioxide production was determined in 1 cow pair per day between 0800 to 1400 h. The HCH were heavier and had a lower body condition score compared with HNZ, but the difference in BW was smaller compared with former studies. Milk production, grass intake, and nutrient digestibility did not differ between the 2 cow strains, but HCH grazed for a longer time during the 6-h measurement period and performed more grazing mastication compared with the HNZ. No difference was found between the 2 cow strains with regard to EE (291 ± 15.6 kJ) per kilogram of metabolic BW, mainly due to a high between-animal variation in EE. As efficiency and energy use are important in sustainable, pasture-based, organic milk production systems, the determining factors for EE, such as methodology, genetics, physical activity, grazing behavior, and pasture quality, should be investigated and quantified in more detail in future studies.


Sujet(s)
Bovins/physiologie , Métabolisme énergétique , Lait/métabolisme , Animaux , Composition corporelle , Poids , Dioxyde de carbone/analyse , Industrie laitière , Femelle , Lactation , Nouvelle-Zélande , Agriculture biologique , Poaceae , Thermogenèse
7.
J Anim Physiol Anim Nutr (Berl) ; 98(6): 1143-53, 2014 Dec.
Article de Anglais | MEDLINE | ID: mdl-24548047

RÉSUMÉ

The challenge for sustainable organic dairy farming is identification of cows that are well adapted to forage-based production systems. Therefore, the aim of this study was to compare the grazing behaviour, physical activity and metabolic profile of two different Holstein strains kept in an organic grazing system without concentrate supplementation. Twelve Swiss (HCH ; 566 kg body weight (BW) and 12 New Zealand Holstein-Friesian (HNZ ; 530 kg BW) cows in mid-lactation were kept in a rotational grazing system. After an adaptation period, the milk yield, nutrient intake, physical activity and grazing behaviour were recorded for each cow for 7 days. On three consecutive days, blood was sampled at 07:00, 12:00 and 17:00 h from each cow by jugular vein puncture. Data were analysed using linear mixed models. No differences were found in milk yield, but milk fat (3.69 vs. 4.05%, P = 0.05) and milk protein percentage (2.92 vs. 3.20%, P < 0.01) were lower in HCH than in HNZ cows. Herbage intake did not differ between strains, but organic matter digestibility was greater (P = 0.01) in HCH compared to HNZ cows. The HCH cows spent less (P = 0.04) time ruminating (439 vs. 469 min/day) and had a lower (P = 0.02) number of ruminating boli when compared to the HNZ cows. The time spent eating and physical activity did not differ between strains. Concentrations of IGF-1 and T3 were lower (P ≤ 0.05) in HCH than HNZ cows. In conclusion, HCH cows were not able to increase dry matter intake in order to express their full genetic potential for milk production when kept in an organic grazing system without concentrate supplementation. On the other hand, HNZ cows seem to compensate for the reduced nutrient availability better than HCH cows but could not use that advantage for increased production efficiency.


Sujet(s)
Élevage/méthodes , Bovins/physiologie , Métabolisme énergétique/physiologie , Comportement alimentaire/physiologie , Activité motrice/physiologie , Animaux , Bovins/génétique , Climat , Industrie laitière , Lactation
8.
J Dairy Sci ; 96(8): 5352-63, 2013 Aug.
Article de Anglais | MEDLINE | ID: mdl-23769375

RÉSUMÉ

The first objective of this study was to compare the productive and reproductive performance of Holstein-Friesian (CH HF), Fleckvieh (CH FV), and Brown Swiss (CH BS) cows of Swiss origin with New Zealand Holstein-Friesian (NZ HF) cows in pasture-based compact-calving systems; NZ HF cows were chosen as the reference population for such grazing systems. The second objective was to analyze the relationships within and between breeds regarding reproductive performance, milk yield, and body condition score (BCS) dynamics. On 15 commercial Swiss farms, NZ HF cows were paired with Swiss cows over 3 yr. Overall, the study involved 259 complete lactations from 134 cows: 131 from 58 NZ HF, 40 from 24 CH HF, 43 from 27 CH FV, and 45 from 25 CH BS cows. All production parameters were affected by cow breed. Milk and energy-corrected milk yield over 270 d of lactation differed by 1,000 kg between the 2 extreme groups; CH HF having the highest yield and CH BS the lowest. The NZ HF cows had the greatest milk fat and protein concentrations over the lactation and exhibited the highest lactation persistency. Body weight differed by 90 kg between extreme groups; NZ HF and CH BS being the lightest and CH HF and CH FV the heaviest. As a result, the 2 HF strains achieved the highest milk production efficiency (270-d energy-corrected milk/body weight(0.75)). Although less efficient at milk production, CH FV had a high 21-d submission rate (86%) and a high conception rate within 2 inseminations (89%), achieving high pregnancy rates within the first 3 and 6 wk of the breeding period (65 and 81%, respectively). Conversely, poorer reproductive performance was recorded for CH HF cows, with NZ HF and CH BS being intermediate. Both BCS at nadir and at 100 d postpartum had a positive effect on the 6-wk pregnancy rate, even when breed was included in the model. The BCS at 100 d of lactation also positively affected first service conception rate. In conclusion, despite their high milk production efficiency, even in low-input systems, CH HF were not suited to pasture-based seasonal-calving production systems due to poor reproductive performance. On the contrary, CH FV fulfilled the compact-calving reproduction objectives and deserve further consideration in seasonal calving systems, despite their lower milk production potential.


Sujet(s)
Constitution physique/physiologie , Bovins/physiologie , Industrie laitière/méthodes , Lactation/physiologie , Animaux , Constitution physique/génétique , Poids , Bovins/génétique , Matières grasses/analyse , Femelle , Lactation/génétique , Lait/composition chimique , Protéines de lait/analyse , Grossesse , Spécificité d'espèce
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...