Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Science ; 382(6673): eadg5579, 2023 11 24.
Article de Anglais | MEDLINE | ID: mdl-37995219

RÉSUMÉ

During vertebrate organogenesis, increases in morphological complexity are tightly coupled to morphogen expression. In this work, we studied how morphogens influence self-organizing processes at the collective or "supra"-cellular scale in avian skin. We made physical measurements across length scales, which revealed morphogen-enabled material property differences that were amplified at supracellular scales in comparison to cellular scales. At the supracellular scale, we found that fibroblast growth factor (FGF) promoted "solidification" of tissues, whereas bone morphogenetic protein (BMP) promoted fluidity and enhanced mechanical activity. Together, these effects created basement membrane-less compartments within mesenchymal tissue that were mechanically primed to drive avian skin tissue budding. Understanding this multiscale process requires the ability to distinguish between proximal effects of morphogens that occur at the cellular scale and their functional effects, which emerge at the supracellular scale.


Sujet(s)
Protéines morphogénétiques osseuses , Plumes , Organogenèse , Vertébrés , Animaux , Protéines morphogénétiques osseuses/métabolisme , Vertébrés/croissance et développement , Facteurs de croissance fibroblastique/métabolisme , Plumes/croissance et développement , Derme , Embryon de poulet
2.
Stem Cell Reports ; 16(9): 2058-2075, 2021 09 14.
Article de Anglais | MEDLINE | ID: mdl-33836144

RÉSUMÉ

Microphysiological systems (MPSs) (i.e., tissue or organ chips) exploit microfluidics and 3D cell culture to mimic tissue and organ-level physiology. The advent of human induced pluripotent stem cell (hiPSC) technology has accelerated the use of MPSs to study human disease in a range of organ systems. However, in the reduction of system complexity, the intricacies of vasculature are an often-overlooked aspect of MPS design. The growing library of pluripotent stem cell-derived endothelial cell and perivascular cell protocols have great potential to improve the physiological relevance of vasculature within MPS, specifically for in vitro disease modeling. Three strategic categories of vascular MPS are outlined: self-assembled, interface focused, and 3D biofabricated. This review discusses key features and development of the native vasculature, linking that to how hiPSC-derived vascular cells have been generated, the state of the art in vascular MPSs, and opportunities arising from interdisciplinary thinking.


Sujet(s)
Techniques de cultures cellulaires tridimensionnelles , Laboratoires sur puces , Néovascularisation physiologique , Cellules souches/cytologie , Cellules souches/métabolisme , Animaux , Marqueurs biologiques , Différenciation cellulaire/génétique , Cellules endothéliales/cytologie , Cellules endothéliales/métabolisme , Matrice extracellulaire/métabolisme , Régulation de l'expression des gènes , Humains , Cellules souches pluripotentes induites
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE