Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 121
Filtrer
1.
Respir Res ; 25(1): 240, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38867225

RÉSUMÉ

BACKGROUND: Despite the success of antiretroviral therapy (ART), people living with HIV (PLWH) suffer from a high burden of pulmonary diseases, even after accounting for their smoking status. Cytotoxic CD8 T-cells are likely implicated in this phenomenon and may act as a double-edged sword. While being essential in viral infection control, their hyperactivation can also contribute to lung mucosal tissue damage. The effects of HIV and smoking on pulmonary mucosal CD8 T-cell dynamics has been a neglected area of research, which we address herein. METHODS: Bronchoalveolar lavage (BAL) fluid were obtained from ART-treated PLWH (median duration of supressed viral load: 9 years; smokers: n = 14; non-smokers: n = 21) and HIV-uninfected controls (smokers: n = 11; non-smokers: n = 20) without any respiratory symptoms or active infection. Lymphocytes were isolated and CD8 T-cell subsets and homing markers were characterized by multiparametric flow cytometry. RESULTS: Both smoking and HIV infection were independently associated with a significant increase in frequencies of total pulmonary mucosal CD8 T-cell. BAL CD8 T-cells were primarily CD69 + expressing CD103 and/or CD49a, at least one of the two granzymes (GzmA/GzmB), and little Perforin. Higher expression levels of CD103, CD69, and GzmB were observed in smokers versus non-smokers. The ex vivo phenotype of GzmA + and GzmB + cells revealed increased expression of CD103 and CXCR6 in smokers, while PLWH displayed elevated levels of CX3CR1 compared to controls. CONCLUSION: Smoking and HIV could promote cytotoxic CD8 T-cell retention in small airways through different mechanisms. Smoking likely increases recruitment and retention of GzmB + CD8 Trm via CXCR6 and CD103. Heightened CX3CR1 expression could be associated with CD8 non-Trm recruitment from the periphery in PLWH.


Sujet(s)
Infections à VIH , Humains , Mâle , Infections à VIH/traitement médicamenteux , Infections à VIH/immunologie , Femelle , Adulte d'âge moyen , Adulte , Muqueuse respiratoire/immunologie , Muqueuse respiratoire/métabolisme , Muqueuse respiratoire/effets des médicaments et des substances chimiques , Lymphocytes T CD8+/immunologie , Lymphocytes T CD8+/effets des médicaments et des substances chimiques , Lymphocytes T CD8+/métabolisme , Lymphocytes T cytotoxiques/immunologie , Lymphocytes T cytotoxiques/effets des médicaments et des substances chimiques , Lymphocytes T cytotoxiques/métabolisme , Fumer/effets indésirables , Liquide de lavage bronchoalvéolaire/immunologie , Antirétroviraux/usage thérapeutique , Agents antiVIH/usage thérapeutique , Poumon/immunologie , Poumon/effets des médicaments et des substances chimiques , Poumon/métabolisme
2.
Microorganisms ; 12(6)2024 May 22.
Article de Anglais | MEDLINE | ID: mdl-38930430

RÉSUMÉ

Latent tuberculosis infection (LTBI) is common in people living with HIV (PLHIV) in high-TB-burden settings. Active TB is associated with specific stool taxa; however, little is known about the stool microbiota and LTBI in PLHIV. We characterised the stool microbiota of PLHIV with [interferon-γ release assay (IGRA)- and tuberculin skin test (TST)-positive] or without (IGRA- and TST-negative) LTBI (n = 25 per group). The 16S rRNA DNA sequences were analysed using QIIME2, Dirichlet-Multinomial Mixtures, DESeq2, and PICRUSt2. No α- or ß-diversity differences occurred by LTBI status; however, LTBI-positive people were Faecalibacterium-, Blautia-, Gemmiger-, and Bacteroides-enriched and Moryella-, Atopobium-, Corynebacterium-, and Streptococcus-depleted. Inferred metagenome data showed that LTBI-negative-enriched pathways included several metabolite degradation pathways. Stool from LTBI-positive people demonstrated differential taxa abundance based on a quantitative response to antigen stimulation. In LTBI-positive people, older people had different ß-diversities than younger people, whereas in LTBI-negative people, no differences occurred across age groups. Amongst female PLHIV, those with LTBI were, vs. those without LTBI, Faecalibacterium-, Blautia-, Gemmiger-, and Bacteriodes-enriched, which are producers of short-chain fatty acids. Taxonomic differences amongst people with LTBI occurred according to quantitative response to antigen stimulation and age. These data enhance our understanding of the microbiome's potential role in LTBI.

3.
Res Sq ; 2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38645218

RÉSUMÉ

Background: Latent tuberculosis infection (LTBI) is common in people living with HIV (PLHIV) in high TB burden settings. Active TB is associated with specific stool taxa; however, little is known about the stool microbiota and LTBI, including in PLHIV. Method: Within a parent study that recruited adult females with HIV from Cape Town, South Africa into predefined age categories (18-25, 35-60 years), we characterised the stool microbiota of those with [interferon-γ release assay (IGRA)- and tuberculin skin test (TST)-positive] or without (IGRA- and TST- negative) LTBI (n=25 per group). 16S rRNA DNA sequences were analysed using QIIME2, Dirichlet Multinomial Mixtures, DESeq2 and PICRUSt2. Results: No α- or ß-diversity differences occurred by LTBI status; however, LTBI-positives were Faecalibacterium-, Blautia-, Gemmiger-, Bacteroides-enriched and Moryella-, Atopobium-, Corynebacterium-, Streptococcus-depleted. Inferred metagenome data showed LTBI-negative-enriched pathways included several involved in methylglyoxal degradation, L-arginine, putrescine, 4-aminobutanoate degradation and L-arginine and ornithine degradation. Stool from LTBI-positives demonstrated differential taxa abundance based on a quantitative response to antigen stimulation (Acidaminococcus-enrichment and Megamonas-, Alistipes-, and Paraprevotella-depletion associated with higher IGRA or TST responses, respectively). In LTBI-positives, older people had different ß-diversities than younger people whereas, in LTBI-negatives, no differences occurred across age groups. Conclusion: Amongst female PLHIV, those with LTBI had, vs. those without LTBI, Faecalibacterium, Blautia, Gemmiger, Bacteriodes-enriched, which are producers of short chain fatty acids. Taxonomic differences amongst people with LTBI occurred according to quantitative response to antigen stimulation and age. These data enhance our understanding of the microbiome's potential role in LTBI.

4.
Res Sq ; 2024 Jan 31.
Article de Anglais | MEDLINE | ID: mdl-38352496

RÉSUMÉ

To understand natural resistance to Mycobacterium tuberculosis ( Mtb ) infection, we studied people living with HIV (PLWH) in an area of high Mtb transmission. Given that alveolar leukocytes may contribute to this resistance, we performed single cell RNA-sequencing of bronchoalveolar lavage cells, unstimulated or ex vivo stimulated with Mtb . We obtained high quality cells for 7 participants who were TST & IGRA positive (called LTBI) and 6 who were persistently TST & IGRA negative (called resisters). Alveolar macrophages (AM) from resisters displayed more of an M1 phenotype relative to LTBI AM at baseline. Alveolar lymphocytosis (10%-60%) was exhibited by 5/6 resisters, resulting in higher numbers of CD4 + and CD8 + IFNG -expressing cells at baseline and upon Mtb challenge than LTBI samples. Mycobactericidal granulysin was expressed almost exclusively by a cluster of CD8 + T cells that co-expressed granzyme B, perforin and NK cell receptors. For resisters, these poly-cytotoxic T cells over-represented activating NK cell receptors and were present at 15-fold higher numbers in alveoli compared to LTBI. Altogether, our results showed that alveolar lymphocytosis, with increased numbers of alveolar IFNG -expressing cells and CD8 + poly-cytotoxic T cells, as well as activated AM were strongly associated with protection from persistent Mtb infection in PLWH.

5.
PLoS Genet ; 19(8): e1010888, 2023 08.
Article de Anglais | MEDLINE | ID: mdl-37616312

RÉSUMÉ

Persons living with HIV (PLWH) have an increased risk for tuberculosis (TB). After prolonged and repeated exposure, some PLWH never develop TB and show no evidence of immune sensitization to Mycobacterium tuberculosis (Mtb) as defined by persistently negative tuberculin skin tests (TST) and interferon gamma release assays (IGRA). This group has been identified and defined as HIV+ persistently TB, tuberculin and IGRA negative (HITTIN). To investigate potential innate mechanisms unique to individuals with the HITTIN phenotype we compared their neutrophil Mtb infection response to that of PLWH, with no TB history, but who test persistently IGRA positive, and tuberculin positive (HIT). Neutrophil samples from 17 HITTIN (PMNHITTIN) and 11 HIT (PMNHIT) were isolated and infected with Mtb H37Rv for 1h and 6h. RNA was extracted and used for RNAseq analysis. Since there was no significant differential transcriptional response at 1h between infected PMNHITTIN and PMNHIT, we focused on the 6h timepoint. When compared to uninfected PMN, PMNHITTIN displayed 3106 significantly upregulated and 3548 significantly downregulated differentially expressed genes (DEGs) (absolute cutoff of a log2FC of 0.2, FDR < 0.05) whereas PMNHIT demonstrated 3816 significantly upregulated and 3794 significantly downregulated DEGs following 6h Mtb infection. Contrasting the log2FC 6h infection response to Mtb from PMNHITTIN against PMNHIT, 2285 genes showed significant differential response between the two groups. Overall PMNHITTIN had a lower fold change response to Mtb infection compared to PMNHIT. According to pathway enrichment, Apoptosis and NETosis were differentially regulated between HITTIN and HIT PMN responses after 6h Mtb infection. To corroborate the blunted NETosis transcriptional response measured among HITTIN, fluorescence microscopy revealed relatively lower neutrophil extracellular trap formation and cell loss in PMNHITTIN compared to PMNHIT, showing that PMNHITTIN have a distinct response to Mtb.


Sujet(s)
Pièges extracellulaires , Infections à VIH , Mycobacterium tuberculosis , Humains , Tests de libération d'interféron-gamma , Mycobacterium tuberculosis/génétique , Tuberculine , Infections à VIH/complications , Infections à VIH/génétique
6.
Sci Rep ; 13(1): 6236, 2023 04 17.
Article de Anglais | MEDLINE | ID: mdl-37069249

RÉSUMÉ

Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict COVID-19 severity in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different COVID-19 severity were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of COVID-19 severity. Further research is needed to understand how to incorporate protein measurement into clinical care.


Sujet(s)
COVID-19 , Humains , COVID-19/diagnostic , Protéines , Facteurs de risque , Évolution de la maladie , Études rétrospectives
7.
PLoS Pathog ; 19(3): e1011260, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36972292

RÉSUMÉ

Leprosy, caused by Mycobacterium leprae, rarely affects children younger than 5 years. Here, we studied a multiplex leprosy family that included monozygotic twins aged 22 months suffering from paucibacillary leprosy. Whole genome sequencing identified three amino acid mutations previously associated with Crohn's disease and Parkinson's disease as candidate variants for early onset leprosy: LRRK2 N551K, R1398H and NOD2 R702W. In genome-edited macrophages, we demonstrated that cells expressing the LRRK2 mutations displayed reduced apoptosis activity following mycobacterial challenge independently of NOD2. However, employing co-immunoprecipitation and confocal microscopy we showed that LRRK2 and NOD2 proteins interacted in RAW cells and monocyte-derived macrophages, and that this interaction was substantially reduced for the NOD2 R702W mutation. Moreover, we observed a joint effect of LRRK2 and NOD2 variants on Bacillus Calmette-Guérin (BCG)-induced respiratory burst, NF-κB activation and cytokine/chemokine secretion with a strong impact for the genotypes found in the twins consistent with a role of the identified mutations in the development of early onset leprosy.


Sujet(s)
Prédisposition génétique à une maladie , Lèpre , Enfant , Humains , Allèles , Génotype , Lèpre/génétique , Mutation , Protéine adaptatrice de signalisation NOD2/génétique , Leucine-rich repeat serine-threonine protein kinase-2/génétique
8.
Mol Microbiol ; 119(2): 161-173, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36196760

RÉSUMÉ

Enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) are gastrointestinal pathogens responsible for severe diarrheal illness. EHEC and EPEC form "attaching and effacing" lesions during colonization and, upon adherence, inject proteins directly into host intestinal cells via the type III secretion system (T3SS). Injected bacterial proteins have a variety of functions but generally alter host cell biology to favor survival and/or replication of the pathogen. Non-LEE-encoded effector A (NleA) is a T3SS-injected effector of EHEC, EPEC, and the related mouse pathogen Citrobacter rodentium. Studies in mouse models indicate that NleA has an important role in bacterial virulence. However, the mechanism by which NleA contributes to disease remains unknown. We have determined that the following translocation into host cells, a serine and threonine-rich region of NleA is modified by host-mediated mucin-type O-linked glycosylation. Surprisingly, this region was not present in several clinical EHEC isolates. When expressed in C. rodentium, a non-modifiable variant of NleA was indistinguishable from wildtype NleA in an acute mortality model but conferred a modest increase in persistence over the course of infection in mixed infections in C57BL/6J mice. This is the first known example of a bacterial effector being modified by host-mediated O-linked glycosylation. Our data also suggests that this modification may confer a selective disadvantage to the bacteria during in vivo infection.


Sujet(s)
Escherichia coli entéropathogène , Protéines Escherichia coli , Humains , Animaux , Souris , Facteurs de virulence/métabolisme , Cellules HeLa , Glycosylation , Protéines Escherichia coli/métabolisme , Souris de lignée C57BL
10.
Clin Proteomics ; 19(1): 34, 2022 Sep 28.
Article de Anglais | MEDLINE | ID: mdl-36171541

RÉSUMÉ

INTRODUCTION: Severe COVID-19 leads to important changes in circulating immune-related proteins. To date it has been difficult to understand their temporal relationship and identify cytokines that are drivers of severe COVID-19 outcomes and underlie differences in outcomes between sexes. Here, we measured 147 immune-related proteins during acute COVID-19 to investigate these questions. METHODS: We measured circulating protein abundances using the SOMAscan nucleic acid aptamer panel in two large independent hospital-based COVID-19 cohorts in Canada and the United States. We fit generalized additive models with cubic splines from the start of symptom onset to identify protein levels over the first 14 days of infection which were different between severe cases and controls, adjusting for age and sex. Severe cases were defined as individuals with COVID-19 requiring invasive or non-invasive mechanical respiratory support. RESULTS: 580 individuals were included in the analysis. Mean subject age was 64.3 (sd 18.1), and 47% were male. Of the 147 proteins, 69 showed a significant difference between cases and controls (p < 3.4 × 10-4). Three clusters were formed by 108 highly correlated proteins that replicated in both cohorts, making it difficult to determine which proteins have a true causal effect on severe COVID-19. Six proteins showed sex differences in levels over time, of which 3 were also associated with severe COVID-19: CCL26, IL1RL2, and IL3RA, providing insights to better understand the marked differences in outcomes by sex. CONCLUSIONS: Severe COVID-19 is associated with large changes in 69 immune-related proteins. Further, five proteins were associated with sex differences in outcomes. These results provide direct insights into immune-related proteins that are strongly influenced by severe COVID-19 infection.

11.
Sci Adv ; 8(22): eabm2510, 2022 06 03.
Article de Anglais | MEDLINE | ID: mdl-35648852

RÉSUMÉ

Despite the availability of highly efficacious vaccines, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lacks effective drug treatment, which results in a high rate of mortality. To address this therapeutic shortcoming, we applied a systems biology approach to the study of patients hospitalized with severe COVID. We show that, at the time of hospital admission, patients who were equivalent on the clinical ordinal scale displayed significant differential monocyte epigenetic and transcriptomic attributes between those who would survive and those who would succumb to COVID-19. We identified messenger RNA metabolism, RNA splicing, and interferon signaling pathways as key host responses overactivated by patients who would not survive. Those pathways are prime drug targets to reduce mortality of critically ill patients with COVID-19, leading us to identify tacrolimus, zotatifin, and nintedanib as three strong candidates for treatment of severely ill patients at the time of hospital admission.


Sujet(s)
Traitements médicamenteux de la COVID-19 , Antiviraux/pharmacologie , Antiviraux/usage thérapeutique , Humains , SARS-CoV-2 , Biologie des systèmes
12.
Front Immunol ; 13: 1044592, 2022.
Article de Anglais | MEDLINE | ID: mdl-36776396

RÉSUMÉ

Pulmonary macrophages have two distinct ontogenies: long-lived embryonically-seeded alveolar macrophages (AM) and bone marrow-derived macrophages (BMDM). Here, we show that after infection with a virulent strain of Mycobacterium tuberculosis (H37Rv), primary murine AM exhibit a unique transcriptomic signature characterized by metabolic reprogramming distinct from conventional BMDM. In contrast to BMDM, AM failed to shift from oxidative phosphorylation (OXPHOS) to glycolysis and consequently were unable to control infection with an avirulent strain (H37Ra). Importantly, healthy human AM infected with H37Ra equally demonstrated diminished energetics, recapitulating our observation in the murine model system. However, the results from seahorse showed that the shift towards glycolysis in both AM and BMDM was inhibited by H37Rv. We further demonstrated that pharmacological (e.g. metformin or the iron chelator desferrioxamine) reprogramming of AM towards glycolysis reduced necrosis and enhanced AM capacity to control H37Rv growth. Together, our results indicate that the unique bioenergetics of AM renders these cells a perfect target for Mtb survival and that metabolic reprogramming may be a viable host targeted therapy against TB.


Sujet(s)
Mycobacterium tuberculosis , Tuberculose , Humains , Animaux , Souris , Macrophages alvéolaires/métabolisme , Tuberculose/microbiologie , Macrophages/microbiologie , Nécrose/métabolisme
13.
PLoS Negl Trop Dis ; 15(12): e0010029, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34879060

RÉSUMÉ

Leprosy is the second most prevalent mycobacterial disease globally. Despite the existence of an effective therapy, leprosy incidence has consistently remained above 200,000 cases per year since 2010. Numerous host genetic factors have been identified for leprosy that contribute to the persistently high case numbers. In the past decade, genetic epidemiology approaches, including genome-wide association studies (GWAS), identified more than 30 loci contributing to leprosy susceptibility. However, GWAS loci commonly encompass multiple genes, which poses a challenge to define causal candidates for each locus. To address this problem, we hypothesized that genes contributing to leprosy susceptibility differ in their frequencies of rare protein-altering variants between cases and controls. Using deep resequencing we assessed protein-coding variants for 34 genes located in GWAS or linkage loci in 555 Vietnamese leprosy cases and 500 healthy controls. We observed 234 nonsynonymous mutations in the targeted genes. A significant depletion of protein-altering variants was detected for the IL18R1 and BCL10 genes in leprosy cases. The IL18R1 gene is clustered with IL18RAP and IL1RL1 in the leprosy GWAS locus on chromosome 2q12.1. Moreover, in a recent GWAS we identified an HLA-independent signal of association with leprosy on chromosome 6p21. Here, we report amino acid changes in the CDSN and PSORS1C2 genes depleted in leprosy cases, indicating them as candidate genes in the chromosome 6p21 locus. Our results show that deep resequencing can identify leprosy candidate susceptibility genes that had been missed by classic linkage and association approaches.


Sujet(s)
Prédisposition génétique à une maladie , Étude d'association pangénomique , Lèpre/génétique , Adolescent , Adulte , Protéine-10 du lymphome LLC à cellules B/génétique , Femelle , Liaison génétique , Séquençage nucléotidique à haut débit , Humains , Sous-unité alpha du récepteur à l'interleukine-18/génétique , Sous-unité bêta du récepteur à l'interleukine-18/génétique , Mâle , Jeune adulte
14.
J Clin Invest ; 131(22)2021 11 15.
Article de Anglais | MEDLINE | ID: mdl-34473646

RÉSUMÉ

Persons living with HIV (PLWH) are at increased risk of tuberculosis (TB). HIV-associated TB is often the result of recent infection with Mycobacterium tuberculosis (M. tuberculosis) followed by rapid progression to disease. Alveolar macrophages (AMs) are the first cells of the innate immune system that engage M. tuberculosis, but how HIV and antiretroviral therapy (ART) affect the anti-mycobacterial response of AMs is not known. To investigate the impact of HIV and ART on the transcriptomic and epigenetic response of AMs to M. tuberculosis, we obtained AMs by bronchoalveolar lavage from 20 PLWH receiving ART, 16 control subjects who were HIV-free (HC), and 14 subjects who received ART as preexposure prophylaxis (PrEP) to prevent HIV infection. Following in vitro challenge with M. tuberculosis, AMs from each group displayed overlapping but distinct profiles of significantly up- and downregulated genes in response to M. tuberculosis. Comparatively, AMs isolated from both PLWH and PrEP subjects presented a substantially weaker transcriptional response. In addition, AMs from HC subjects challenged with M. tuberculosis responded with pronounced chromatin accessibility changes while AMs obtained from PLWH and PrEP subjects displayed no significant changes in their chromatin state. Collectively, these results revealed a stronger adverse effect of ART than HIV on the epigenetic landscape and transcriptional responsiveness of AMs.


Sujet(s)
Épigenèse génétique , Infections à VIH/immunologie , Macrophages alvéolaires/immunologie , Mycobacterium tuberculosis/immunologie , Adulte , Sujet âgé , Antirétroviraux/effets indésirables , Femelle , Infections à VIH/traitement médicamenteux , Humains , Macrophages alvéolaires/métabolisme , Mâle , Adulte d'âge moyen , Prophylaxie pré-exposition , Transcriptome
15.
Front Immunol ; 12: 714808, 2021.
Article de Anglais | MEDLINE | ID: mdl-34276708

RÉSUMÉ

Human genetic control is thought to affect a considerable part of the outcome of infection with Mycobacterium tuberculosis (Mtb). Most of us deal with the pathogen by containment (associated with clinical "latency") or sterilization, but tragically millions each year do not. After decades of studies on host genetic susceptibility to Mtb infection, genetic variation has been discovered to play a role in tuberculous immunoreactivity and tuberculosis (TB) disease. Genes encoding pattern recognition receptors (PRRs) enable a consistent, molecularly direct interaction between humans and Mtb which suggests the potential for co-evolution. In this review, we explore the roles ascribed to PRRs during Mtb infection and ask whether such a longstanding and intimate interface between our immune system and this pathogen plays a critical role in determining the outcome of Mtb infection. The scientific evidence to date suggests that PRR variation is clearly implicated in altered immunity to Mtb but has a more subtle role in limiting the pathogen and pathogenesis. In contrast to 'effectors' like IFN-γ, IL-12, Nitric Oxide and TNF that are critical for Mtb control, 'sensors' like PRRs are less critical for the outcome of Mtb infection. This is potentially due to redundancy of the numerous PRRs in the innate arsenal, such that Mtb rarely goes unnoticed. Genetic association studies investigating PRRs during Mtb infection should therefore be designed to investigate endophenotypes of infection - such as immunological or clinical variation - rather than just TB disease, if we hope to understand the molecular interface between innate immunity and Mtb.


Sujet(s)
Résistance à la maladie/génétique , Prédisposition génétique à une maladie , Variation génétique , Immunité/génétique , Mycobacterium tuberculosis/immunologie , Récepteurs de reconnaissance de motifs moléculaires/génétique , Tuberculose/étiologie , Animaux , Marqueurs biologiques , Résistance à la maladie/immunologie , Interactions hôte-pathogène/génétique , Interactions hôte-pathogène/immunologie , Humains , Lectines de type C/génétique , Lectines de type C/métabolisme , Souris , Souris knockout
16.
Eur Respir Rev ; 30(160)2021 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-34039674

RÉSUMÉ

Standardised management of tuberculosis may soon be replaced by individualised, precision medicine-guided therapies informed with knowledge provided by the field of systems biology. Systems biology is a rapidly expanding field of computational and mathematical analysis and modelling of complex biological systems that can provide insights into mechanisms underlying tuberculosis, identify novel biomarkers, and help to optimise prevention, diagnosis and treatment of disease. These advances are critically important in the context of the evolving epidemic of drug-resistant tuberculosis. Here, we review the available evidence on the role of systems biology approaches - human and mycobacterial genomics and transcriptomics, proteomics, lipidomics/metabolomics, immunophenotyping, systems pharmacology and gut microbiomes - in the management of tuberculosis including prediction of risk for disease progression, severity of mycobacterial virulence and drug resistance, adverse events, comorbidities, response to therapy and treatment outcomes. Application of the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach demonstrated that at present most of the studies provide "very low" certainty of evidence for answering clinically relevant questions. Further studies in large prospective cohorts of patients, including randomised clinical trials, are necessary to assess the applicability of the findings in tuberculosis prevention and more efficient clinical management of patients.


Sujet(s)
Biologie des systèmes , Tuberculose , Génomique , Humains , Métabolomique , Études prospectives , Tuberculose/diagnostic , Tuberculose/traitement médicamenteux
17.
PLoS Genet ; 17(3): e1009392, 2021 03.
Article de Anglais | MEDLINE | ID: mdl-33661925

RÉSUMÉ

The natural history of tuberculosis (TB) is characterized by a large inter-individual outcome variability after exposure to Mycobacterium tuberculosis. Specifically, some highly exposed individuals remain resistant to M. tuberculosis infection, as inferred by tuberculin skin test (TST) or interferon-gamma release assays (IGRAs). We performed a genome-wide association study of resistance to M. tuberculosis infection in an endemic region of Southern Vietnam. We enrolled household contacts (HHC) of pulmonary TB cases and compared subjects who were negative for both TST and IGRA (n = 185) with infected individuals (n = 353) who were either positive for both TST and IGRA or had a diagnosis of TB. We found a genome-wide significant locus on chromosome 10q26.2 with a cluster of variants associated with strong protection against M. tuberculosis infection (OR = 0.42, 95%CI 0.35-0.49, P = 3.71×10-8, for the genotyped variant rs17155120). The locus was replicated in a French multi-ethnic HHC cohort and a familial admixed cohort from a hyper-endemic area of South Africa, with an overall OR for rs17155120 estimated at 0.50 (95%CI 0.45-0.55, P = 1.26×10-9). The variants are located in intronic regions and upstream of C10orf90, a tumor suppressor gene which encodes an ubiquitin ligase activating the transcription factor p53. In silico analysis showed that the protective alleles were associated with a decreased expression in monocytes of the nearby gene ADAM12 which could lead to an enhanced response of Th17 lymphocytes. Our results reveal a novel locus controlling resistance to M. tuberculosis infection across different populations.


Sujet(s)
Chromosomes humains de la paire 10 , Résistance à la maladie/génétique , Prédisposition génétique à une maladie , Étude d'association pangénomique , Mycobacterium tuberculosis , Locus de caractère quantitatif , Tuberculose/génétique , Tuberculose/microbiologie , Allèles , Biologie informatique/méthodes , France , Génotype , Humains , Méta-analyse comme sujet , Groupes de population/génétique , République d'Afrique du Sud , Vietnam
19.
Med ; 2(4): 411-422.e5, 2021 04 09.
Article de Anglais | MEDLINE | ID: mdl-33521749

RÉSUMÉ

BACKGROUND: Coronavirus disease 2019 (COVID-19) primarily affects the lungs, but evidence of systemic disease with multi-organ involvement is emerging. Here, we developed a blood test to broadly quantify cell-, tissue-, and organ-specific injury due to COVID-19. METHODS: Our test leverages genome-wide methylation profiling of circulating cell-free DNA in plasma. We assessed the utility of this test to identify subjects with severe disease in two independent, longitudinal cohorts of hospitalized patients. Cell-free DNA profiling was performed on 104 plasma samples from 33 COVID-19 patients and compared to samples from patients with other viral infections and healthy controls. FINDINGS: We found evidence of injury to the lung and liver and involvement of red blood cell progenitors associated with severe COVID-19. The concentration of cell-free DNA correlated with the World Health Organization (WHO) ordinal scale for disease progression and was significantly increased in patients requiring intubation. CONCLUSIONS: This study points to the utility of cell-free DNA as an analyte to monitor and study COVID-19. FUNDING: This work was supported by NIH grants 1DP2AI138242 (to I.D.V.), R01AI146165 (to I.D.V., M.P.C., F.M.M., and J.R.), 1R01AI151059 (to I.D.V.), K08-CA230156 (to W.G.), and R33-AI129455 to C.Y.C., a Synergy award from the Rainin Foundation (to I.D.V.), a SARS-CoV-2 seed grant at Cornell (to I.D.V.), a National Sciences and Engineering Research Council of Canada fellowship PGS-D3 (to A.P.C.), and a Burroughs-Wellcome CAMS Award (to W.G.). D.C.V. is supported by a Fonds de la Recherche en Sante du Quebec Clinical Research Scholar Junior 2 award. C.Y.C. is supported by the California Initiative to Advance Precision Medicine, and the Charles and Helen Schwab Foundation.


Sujet(s)
COVID-19 , Acides nucléiques acellulaires , Maladies virales , Humains , Méthylation , SARS-CoV-2/génétique
20.
J Immunol ; 206(3): 641-651, 2021 02 01.
Article de Anglais | MEDLINE | ID: mdl-33318292

RÉSUMÉ

People living with HIV have high burdens of chronic lung disease, lung cancers, and pulmonary infections despite antiretroviral therapy (ART). The rates of tobacco smoking by people living with HIV vastly exceed that of the general population. Furthermore, we showed that HIV can persist within the lung mucosa despite long-term ART. As CD8 T cell cytotoxicity is pivotal for controlling viral infections and eliminating defective cells, we explored the phenotypic and functional features of pulmonary versus peripheral blood CD8 T cells in ART-treated HIV+ and uninfected controls. Bronchoalveolar lavage fluid and matched blood were obtained from asymptomatic ART-treated HIV+ smokers (n = 11) and nonsmokers (n = 15) and uninfected smokers (n = 7) and nonsmokers (n = 10). CD8 T cell subsets and phenotypes were assessed by flow cytometry. Perforin/granzyme B content, degranulation (CD107a expression), and cytotoxicity against autologous Gag peptide-pulsed CD4 T cells (Annexin V+) following in vitro stimulation were assessed. In all groups, pulmonary CD8 T cells were enriched in effector memory subsets compared with blood and displayed higher levels of activation (HLA-DR+) and exhaustion (PD1+) markers. Significant reductions in proportions of senescent pulmonary CD28-CD57+ CD8 T cells were observed only in HIV+ smokers. Pulmonary CD8 T cells showed lower perforin expression ex vivo compared with blood CD8 T cells, with reduced granzyme B expression only in HIV+ nonsmokers. Bronchoalveolar lavage CD8 T cells showed significantly less in vitro degranulation and CD4 killing capacity than blood CD8 T cells. Therefore, pulmonary mucosal CD8 T cells are more differentiated, activated, and exhausted, with reduced killing capacity in vitro than blood CD8 T cells, potentially contributing to a suboptimal anti-HIV immune response within the lungs.


Sujet(s)
Antirétroviraux/usage thérapeutique , Infections à VIH/immunologie , Survivants à long terme d'une infection à VIH , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/physiologie , Muqueuse respiratoire/immunologie , Lymphocytes T cytotoxiques/immunologie , Adulte , Dégranulation cellulaire , Cellules cultivées , Vieillissement de la cellule , Cytotoxicité immunologique , Femelle , Infections à VIH/traitement médicamenteux , Humains , Échappement immunitaire , Mémoire immunologique , Immunophénotypage , Activation des lymphocytes , Mâle , Adulte d'âge moyen , Phénotype
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE