Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Elife ; 92020 07 30.
Article de Anglais | MEDLINE | ID: mdl-32729830

RÉSUMÉ

High-altitude environments require that animals meet the metabolic O2 demands for locomotion and thermogenesis in O2-thin air, but the degree to which convergent metabolic changes have arisen across independent high-altitude lineages or the speed at which such changes arise is unclear. We examined seven high-altitude waterfowl that have inhabited the Andes (3812-4806 m elevation) over varying evolutionary time scales, to elucidate changes in biochemical pathways of energy metabolism in flight muscle relative to low-altitude sister taxa. Convergent changes across high-altitude taxa included increased hydroxyacyl-coA dehydrogenase and succinate dehydrogenase activities, decreased lactate dehydrogenase, pyruvate kinase, creatine kinase, and cytochrome c oxidase activities, and increased myoglobin content. ATP synthase activity increased in only the longest established high-altitude taxa, whereas hexokinase activity increased in only newly established taxa. Therefore, changes in pathways of lipid oxidation, glycolysis, and mitochondrial oxidative phosphorylation are common strategies to cope with high-altitude hypoxia, but some changes require longer evolutionary time to arise.


Sujet(s)
Anseriformes/métabolisme , Évolution biologique , Métabolisme énergétique , Muscles squelettiques/métabolisme , Altitude , Répartition des animaux , Animaux , Amérique du Sud
2.
J Exp Biol ; 223(Pt 5)2020 03 11.
Article de Anglais | MEDLINE | ID: mdl-32041807

RÉSUMÉ

The cardiovascular system is critical for delivering O2 to tissues. Here, we examined the cardiovascular responses to progressive hypoxia in four high-altitude Andean duck species compared with four related low-altitude populations in North America, tested at their native altitude. Ducks were exposed to stepwise decreases in inspired partial pressure of O2 while we monitored heart rate, O2 consumption rate, blood O2 saturation, haematocrit (Hct) and blood haemoglobin (Hb) concentration. We calculated O2 pulse (the product of stroke volume and the arterial-venous O2 content difference), blood O2 concentration and heart rate variability. Regardless of altitude, all eight populations maintained O2 consumption rate with minimal change in heart rate or O2 pulse, indicating that O2 consumption was maintained by either a constant arterial-venous O2 content difference (an increase in the relative O2 extracted from arterial blood) or by a combination of changes in stroke volume and the arterial-venous O2 content difference. Three high-altitude taxa (yellow-billed pintails, cinnamon teal and speckled teal) had higher Hct and Hb concentration, increasing the O2 content of arterial blood, and potentially providing a greater reserve for enhancing O2 delivery during hypoxia. Hct and Hb concentration between low- and high-altitude populations of ruddy duck were similar, representing a potential adaptation to diving life. Heart rate variability was generally lower in high-altitude ducks, concurrent with similar or lower heart rates than low-altitude ducks, suggesting a reduction in vagal and sympathetic tone. These unique features of the Andean ducks differ from previous observations in both Andean geese and bar-headed geese, neither of which exhibit significant elevations in Hct or Hb concentration compared with their low-altitude relatives, revealing yet another avian strategy for coping with high altitude.


Sujet(s)
Adaptation biologique , Altitude , Canards/physiologie , Consommation d'oxygène , Anaérobiose , Animaux , Animaux sauvages/physiologie , Amérique du Nord , Pérou
3.
J Exp Biol ; 222(Pt 7)2019 04 01.
Article de Anglais | MEDLINE | ID: mdl-30846536

RÉSUMÉ

We examined the control of breathing and respiratory gas exchange in six species of high-altitude duck that independently colonized the high Andes. We compared ducks from high-altitude populations in Peru (Lake Titicaca at ∼3800 m above sea level; Chancay River at ∼3000-4100 m) with closely related populations or species from low altitude. Hypoxic ventilatory responses were measured shortly after capture at the native altitude. In general, ducks responded to acute hypoxia with robust increases in total ventilation and pulmonary O2 extraction. O2 consumption rates were maintained or increased slightly in acute hypoxia, despite ∼1-2°C reductions in body temperature in most species. Two high-altitude taxa - yellow-billed pintail and torrent duck - exhibited higher total ventilation than their low-altitude counterparts, and yellow-billed pintail exhibited greater increases in pulmonary O2 extraction in severe hypoxia. In contrast, three other high-altitude taxa - Andean ruddy duck, Andean cinnamon teal and speckled teal - had similar or slightly reduced total ventilation and pulmonary O2 extraction compared with low-altitude relatives. Arterial O2 saturation (SaO2 ) was elevated in yellow-billed pintails at moderate levels of hypoxia, but there were no differences in SaO2  in other high-altitude taxa compared with their close relatives. This finding suggests that improvements in SaO2  in hypoxia can require increases in both breathing and haemoglobin-O2 affinity, because the yellow-billed pintail was the only high-altitude duck with concurrent increases in both traits compared with its low-altitude relative. Overall, our results suggest that distinct physiological strategies for coping with hypoxia can exist across different high-altitude lineages, even among those inhabiting very similar high-altitude habitats.


Sujet(s)
Acclimatation , Altitude , Température du corps/physiologie , Canards/physiologie , Animaux , Femelle , Hypoxie , Mâle , Orégon , Consommation d'oxygène/physiologie , Pérou , Respiration
4.
J Exp Biol ; 219(Pt 23): 3719-3728, 2016 12 01.
Article de Anglais | MEDLINE | ID: mdl-27618861

RÉSUMÉ

Torrent ducks inhabit fast-flowing rivers in the Andes from sea level to altitudes up to 4500 m. We examined the mitochondrial physiology that facilitates performance over this altitudinal cline by comparing the respiratory capacities of permeabilized fibers, the activities of 16 key metabolic enzymes and the myoglobin content in muscles between high- and low-altitude populations of this species. Mitochondrial respiratory capacities (assessed using substrates of mitochondrial complexes I, II and/or IV) were higher in highland ducks in the gastrocnemius muscle - the primary muscle used to support swimming and diving - but were similar between populations in the pectoralis muscle and the left ventricle. The heightened respiratory capacity in the gastrocnemius of highland ducks was associated with elevated activities of cytochrome oxidase, phosphofructokinase, pyruvate kinase and malate dehydrogenase (MDH). Although respiratory capacities were similar between populations in the other muscles, highland ducks had elevated activities of ATP synthase, lactate dehydrogenase, MDH, hydroxyacyl CoA dehydrogenase and creatine kinase in the left ventricle, and elevated MDH activity and myoglobin content in the pectoralis. Thus, although there was a significant increase in the oxidative capacity of the gastrocnemius in highland ducks, which correlates with improved performance at high altitudes, the variation in metabolic enzyme activities in other muscles not correlated to respiratory capacity, such as the consistent upregulation of MDH activity, may serve other functions that contribute to success at high altitudes.


Sujet(s)
Altitude , Canards/physiologie , Métabolisme énergétique/physiologie , Mitochondries/métabolisme , Muscles squelettiques/métabolisme , Myocarde/métabolisme , Muscles pectoraux/métabolisme , Acetyl-coA C-acetyltransferase/métabolisme , Migration animale/physiologie , Animaux , Creatine kinase/métabolisme , Complexe IV de la chaîne respiratoire/métabolisme , Ventricules cardiaques/métabolisme , Lactate dehydrogenases/métabolisme , Malate dehydrogenase/métabolisme , Mitochondries/physiologie , Myoglobine/métabolisme , Phosphofructokinases/métabolisme , Pyruvate kinase/métabolisme , Amérique du Sud
5.
Physiol Biochem Zool ; 82(6): 625-34, 2009.
Article de Anglais | MEDLINE | ID: mdl-19799504

RÉSUMÉ

Synchronized air breathing may have evolved as a way of minimizing the predation risk known to be associated with air breathing in fish. Little is known about how the size of individuals affects synchronized air breathing and whether some individuals are required to surface earlier than necessary in support of conspecifics, while others delay air intake. Here, the air-breathing behavior of Hoplosternum littorale held in groups or in isolation was investigated in relation to body mass, oxygen tensions, and a variety of other physiological parameters (plasma lactate, hepatic glycogen, hematocrit, hemoglobin, and size of heart, branchial basket, liver, and air-breathing organ [ABO]). A mass-specific relationship with oxygen tension of first surfacing was seen when fish were held in isolation; smaller individuals surfaced at higher oxygen tensions. However, this relationship was lost when the same individuals were held in social groups of four, where synchronous air breathing was observed. In isolation, 62% of fish first surfaced at an oxygen tension lower than the calculated P(crit) (8.13 kPa), but in the group environment this was reduced to 38% of individuals. Higher oxygen tensions at first surfacing in the group environment were related to higher levels of activity rather than any of the physiological parameters measured. In fish held in isolation but denied access to the water surface for 12 h before behavioral testing, there was no mass-specific relationship with oxygen tension at first surfacing. Larger individuals with a greater capacity to store air in their ABOs may, therefore, remain in hypoxic waters for longer periods than smaller individuals when held in isolation unless prior access to the air is prevented. This study highlights how social interaction can affect air-breathing behaviors and the importance of considering both behavioral and physiological responses of fish to hypoxia to understand the survival mechanisms they employ.


Sujet(s)
Mensurations corporelles/physiologie , Poissons-chats/physiologie , Oxygène/analyse , Respiration , Comportement social , Animaux , Brésil , Glycogène/analyse , Hématocrite , Hémoglobines/analyse , Acide lactique/sang , Analyse de régression
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE