Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 17 de 17
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Sci Data ; 11(1): 551, 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38811611

RÉSUMÉ

Proteins are often referred to as the workhorses of cells, and their interactions are necessary to facilitate specific cellular functions. Despite the recognition that protein-protein interactions, and thus protein functions, are determined by proteoform states, such as mutations and post-translational modifications (PTMs), methods for determining the differential abundance of proteoforms across conditions are very limited. Classically, immunoprecipitation coupled with mass spectrometry (IP-MS) has been used to understand how the interactome (preys) of a given protein (bait) changes between conditions to elicit specific cellular functions. Reversing this concept, we present here a new workflow for IP-MS data analysis that focuses on identifying the differential peptidoforms of the bait protein between conditions. This method can provide detailed information about specific bait proteoforms, potentially revealing pathogenic protein states that can be exploited for the development of targeted therapies.


Sujet(s)
Immunoprécipitation , Spectrométrie de masse , Analyse de données , Maturation post-traductionnelle des protéines , Protéomique/méthodes
2.
J Exp Clin Cancer Res ; 43(1): 127, 2024 Apr 29.
Article de Anglais | MEDLINE | ID: mdl-38685100

RÉSUMÉ

BACKGROUND: TP53, the most frequently mutated gene in human cancers, orchestrates a complex transcriptional program crucial for cancer prevention. While certain TP53-dependent genes have been extensively studied, others, like the recently identified RNF144B, remained poorly understood. This E3 ubiquitin ligase has shown potent tumor suppressor activity in murine Eµ Myc-driven lymphoma, emphasizing its significance in the TP53 network. However, little is known about its targets and its role in cancer development, requiring further exploration. In this work, we investigate RNF144B's impact on tumor suppression beyond the hematopoietic compartment in human cancers. METHODS: Employing TP53 wild-type cells, we generated models lacking RNF144B in both non-transformed and cancerous cells of human and mouse origin. By using proteomics, transcriptomics, and functional analysis, we assessed RNF144B's impact in cellular proliferation and transformation. Through in vitro and in vivo experiments, we explored proliferation, DNA repair, cell cycle control, mitotic progression, and treatment resistance. Findings were contrasted with clinical datasets and bioinformatics analysis. RESULTS: Our research underscores RNF144B's pivotal role as a tumor suppressor, particularly in lung adenocarcinoma. In both human and mouse oncogene-expressing cells, RNF144B deficiency heightened cellular proliferation and transformation. Proteomic and transcriptomic analysis revealed RNF144B's novel function in mediating protein degradation associated with cell cycle progression, DNA damage response and genomic stability. RNF144B deficiency induced chromosomal instability, mitotic defects, and correlated with elevated aneuploidy and worse prognosis in human tumors. Furthermore, RNF144B-deficient lung adenocarcinoma cells exhibited resistance to cell cycle inhibitors that induce chromosomal instability. CONCLUSIONS: Supported by clinical data, our study suggests that RNF144B plays a pivotal role in maintaining genomic stability during tumor suppression.


Sujet(s)
Instabilité du génome , Protéine p53 suppresseur de tumeur , Ubiquitin-protein ligases , Animaux , Humains , Souris , Lignée cellulaire tumorale , Prolifération cellulaire , Tumeurs du poumon/génétique , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/métabolisme , Protéine p53 suppresseur de tumeur/métabolisme , Protéine p53 suppresseur de tumeur/génétique , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique
3.
EMBO Mol Med ; 15(12): e18459, 2023 Dec 07.
Article de Anglais | MEDLINE | ID: mdl-37937685

RÉSUMÉ

Triple-negative breast cancer (TNBC) often develops resistance to single-agent treatment, which can be circumvented using targeted combinatorial approaches. Here, we demonstrate that the simultaneous inhibition of LOXL2 and BRD4 synergistically limits TNBC proliferation in vitro and in vivo. Mechanistically, LOXL2 interacts in the nucleus with the short isoform of BRD4 (BRD4S), MED1, and the cell cycle transcriptional regulator B-MyB. These interactions sustain the formation of BRD4 and MED1 nuclear transcriptional foci and control cell cycle progression at the gene expression level. The pharmacological co-inhibition of LOXL2 and BRD4 reduces BRD4 nuclear foci, BRD4-MED1 colocalization, and the transcription of cell cycle genes, thus suppressing TNBC cell proliferation. Targeting the interaction between BRD4S and LOXL2 could be a starting point for the development of new anticancer strategies for the treatment of TNBC.


Sujet(s)
Facteurs de transcription , Tumeurs du sein triple-négatives , Humains , Amino-acid oxidoreductases/génétique , Amino-acid oxidoreductases/métabolisme , Protéines contenant un bromodomaine , Cycle cellulaire , Protéines du cycle cellulaire/métabolisme , Lignée cellulaire tumorale , Prolifération cellulaire/génétique , Régulation de l'expression des gènes tumoraux , Sous-unité-1 du complexe médiateur/génétique , Sous-unité-1 du complexe médiateur/métabolisme , Protéines nucléaires/génétique , Facteurs de transcription/métabolisme , Tumeurs du sein triple-négatives/génétique , Tumeurs du sein triple-négatives/traitement médicamenteux , Tumeurs du sein triple-négatives/métabolisme , Animaux
4.
Mol Syst Biol ; 19(7): e11267, 2023 07 11.
Article de Anglais | MEDLINE | ID: mdl-37259925

RÉSUMÉ

While cellular metabolism impacts the DNA damage response, a systematic understanding of the metabolic requirements that are crucial for DNA damage repair has yet to be achieved. Here, we investigate the metabolic enzymes and processes that are essential for the resolution of DNA damage. By integrating functional genomics with chromatin proteomics and metabolomics, we provide a detailed description of the interplay between cellular metabolism and the DNA damage response. Further analysis identified that Peroxiredoxin 1, PRDX1, contributes to the DNA damage repair. During the DNA damage response, PRDX1 translocates to the nucleus where it reduces DNA damage-induced nuclear reactive oxygen species. Moreover, PRDX1 loss lowers aspartate availability, which is required for the DNA damage-induced upregulation of de novo nucleotide synthesis. In the absence of PRDX1, cells accumulate replication stress and DNA damage, leading to proliferation defects that are exacerbated in the presence of etoposide, thus revealing a role for PRDX1 as a DNA damage surveillance factor.


Sujet(s)
Acide aspartique , Peroxirédoxines , Acide aspartique/génétique , Acide aspartique/métabolisme , Altération de l'ADN , Stress oxydatif/génétique , Peroxirédoxines/génétique , Peroxirédoxines/métabolisme , Espèces réactives de l'oxygène/métabolisme , Humains
5.
Cell Chem Biol ; 2022 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-36513079

RÉSUMÉ

While it is well known that expression levels of metabolic enzymes regulate the metabolic state of the cell, there is mounting evidence that the converse is also true, that metabolite levels themselves can modulate gene expression via epigenetic modifications and transcriptional regulation. Here we focus on the one-carbon metabolic pathway, which provides the essential building blocks of many classes of biomolecules, including purine nucleotides, thymidylate, serine, and methionine. We review the epigenetic roles of one-carbon metabolic enzymes and their associated metabolites and introduce an interactive computational resource that places enzyme essentiality in the context of metabolic pathway topology. Therefore, we briefly discuss examples of metabolic condensates and higher-order complexes of metabolic enzymes downstream of one-carbon metabolism. We speculate that they may be required to the formation of transcriptional condensates and gene expression control. Finally, we discuss new ways to exploit metabolic pathway compartmentalization to selectively target these enzymes in cancer.

6.
Nat Metab ; 3(5): 651-664, 2021 05.
Article de Anglais | MEDLINE | ID: mdl-33972798

RÉSUMÉ

Metabolism negotiates cell-endogenous requirements of energy, nutrients and building blocks with the immediate environment to enable various processes, including growth and differentiation. While there is an increasing number of examples of crosstalk between metabolism and chromatin, few involve uptake of exogenous metabolites. Solute carriers (SLCs) represent the largest group of transporters in the human genome and are responsible for the transport of a wide variety of substrates, including nutrients and metabolites. We aimed to investigate the possible involvement of SLC-mediated solutes uptake and cellular metabolism in regulating cellular epigenetic states. Here, we perform a CRISPR-Cas9 transporter-focused genetic screen and a metabolic compound library screen for the regulation of BRD4-dependent chromatin states in human myeloid leukaemia cells. Intersection of the two orthogonal approaches reveal that loss of transporters involved with purine transport or inhibition of de novo purine synthesis lead to dysfunction of BRD4-dependent transcriptional regulation. Through mechanistic characterization of the metabolic circuitry, we elucidate the convergence of SLC-mediated purine uptake and de novo purine synthesis on BRD4-chromatin occupancy. Moreover, adenine-related metabolite supplementation effectively restores BRD4 functionality on purine impairment. Our study highlights the specific role of purine/adenine metabolism in modulating BRD4-dependent epigenetic states.


Sujet(s)
Protéines du cycle cellulaire/métabolisme , Chromatine/métabolisme , Transporteurs de nucléosides/métabolisme , Purines/métabolisme , Protéines transporteurs de solutés/métabolisme , Facteurs de transcription/métabolisme , Adénine/métabolisme , Voies de biosynthèse , Protéines du cycle cellulaire/antagonistes et inhibiteurs , Lignée cellulaire , Chromatine/génétique , Protéines de liaison à l'ADN/métabolisme , Régulation de l'expression des gènes , Techniques de knock-down de gènes , Humains , Protéines de transport membranaire , Modèles biologiques , Protéines transporteurs de solutés/génétique , Facteurs de transcription/antagonistes et inhibiteurs , Transcription génétique
7.
Nat Genet ; 51(6): 990-998, 2019 06.
Article de Anglais | MEDLINE | ID: mdl-31133746

RÉSUMÉ

The histone acetyl reader bromodomain-containing protein 4 (BRD4) is an important regulator of chromatin structure and transcription, yet factors modulating its activity have remained elusive. Here we describe two complementary screens for genetic and physical interactors of BRD4, which converge on the folate pathway enzyme MTHFD1 (methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1). We show that a fraction of MTHFD1 resides in the nucleus, where it is recruited to distinct genomic loci by direct interaction with BRD4. Inhibition of either BRD4 or MTHFD1 results in similar changes in nuclear metabolite composition and gene expression; pharmacological inhibitors of the two pathways synergize to impair cancer cell viability in vitro and in vivo. Our finding that MTHFD1 and other metabolic enzymes are chromatin associated suggests a direct role for nuclear metabolism in the control of gene expression.


Sujet(s)
Acide folique/métabolisme , Régulation de l'expression des gènes , Methylenetetrahydrofolate Dehydrogenase (NADP)/métabolisme , Antigènes mineurs d'histocompatibilité/métabolisme , Protéines nucléaires/métabolisme , Facteurs de transcription/métabolisme , Protéines du cycle cellulaire , Lignée cellulaire tumorale , Noyau de la cellule/métabolisme , Chromatine/génétique , Techniques de knock-out de gènes , Humains , Mutation perte de fonction , Liaison aux protéines , Cartographie d'interactions entre protéines , Cartes d'interactions protéiques , Transport des protéines , Transduction du signal , Transcription génétique
8.
Nat Chem Biol ; 13(7): 771-778, 2017 Jul.
Article de Anglais | MEDLINE | ID: mdl-28530711

RÉSUMÉ

Approved drugs are invaluable tools to study biochemical pathways, and further characterization of these compounds may lead to repurposing of single drugs or combinations. Here we describe a collection of 308 small molecules representing the diversity of structures and molecular targets of all FDA-approved chemical entities. The CeMM Library of Unique Drugs (CLOUD) covers prodrugs and active forms at pharmacologically relevant concentrations and is ideally suited for combinatorial studies. We screened pairwise combinations of CLOUD drugs for impairment of cancer cell viability and discovered a synergistic interaction between flutamide and phenprocoumon (PPC). The combination of these drugs modulates the stability of the androgen receptor (AR) and resensitizes AR-mutant prostate cancer cells to flutamide. Mechanistically, we show that the AR is a substrate for γ-carboxylation, a post-translational modification inhibited by PPC. Collectively, our data suggest that PPC could be repurposed to tackle resistance to antiandrogens in prostate cancer patients.


Sujet(s)
Évaluation préclinique de médicament , Récepteurs aux androgènes/métabolisme , Bibliothèques de petites molécules/analyse , Bibliothèques de petites molécules/pharmacologie , Lignée cellulaire tumorale , Survie cellulaire/effets des médicaments et des substances chimiques , Relation dose-effet des médicaments , Flutamide/pharmacologie , Humains , Mâle , Structure moléculaire , Phenprocoumone/pharmacologie , Tumeurs de la prostate/traitement médicamenteux , Tumeurs de la prostate/métabolisme , Tumeurs de la prostate/anatomopathologie , Bibliothèques de petites molécules/composition chimique , Relation structure-activité
9.
Bio Protoc ; 7(13): e2368, 2017 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-34541110

RÉSUMÉ

The ubiquitously expressed bromodomain-containing protein 4 (BRD4) is an epigenetic reader, which recruits transcriptional regulatory complexes to acetylated chromatin. Because of its role in enhancing proliferation, BRD4 has become a therapeutic target in oncology, as the inhibition of this protein leads to the reduction of the growth of many tumours. Even though BRD4 is more and more studied, its mechanism of action has not been fully described yet. Therefore, we aimed at generating a cellular reporter system to monitor BRD4 inhibition. Such reporter can be potentially used in high throughput chemical and genetic screenings, in order to uncover new possible BRD4 functional pathways. The deeper understanding of the mechanism of action of BRD4 activity will certainly help in developing new therapy strategies for those cancers so called BRD4-dependent.

10.
Cell ; 168(1-2): 86-100.e15, 2017 Jan 12.
Article de Anglais | MEDLINE | ID: mdl-27916275

RÉSUMÉ

Type 1 diabetes is characterized by the destruction of pancreatic ß cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types, including glucagon-producing α cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of α cells to functional ß-like cells. Here, we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalarial drugs and that the mechanism of action of these molecules depends on the enhancement of GABAA receptor signaling. Our results in zebrafish, rodents, and primary human pancreatic islets identify gephyrin as a druggable target for the regeneration of pancreatic ß cell mass from α cells.


Sujet(s)
Artémisinines/pharmacologie , Diabète de type 1/traitement médicamenteux , Modèles animaux de maladie humaine , Récepteurs GABA-A/métabolisme , Transduction du signal , Animaux , Artéméther , Artémisinines/administration et posologie , Protéines de transport/métabolisme , Transdifférenciation cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , Diabète/traitement médicamenteux , Diabète de type 1/anatomopathologie , Analyse de profil d'expression de gènes , Protéines à homéodomaine/métabolisme , Humains , Insuline/génétique , Insuline/métabolisme , Ilots pancréatiques/effets des médicaments et des substances chimiques , Protéines membranaires/métabolisme , Souris , Stabilité protéique/effets des médicaments et des substances chimiques , Rats , Analyse sur cellule unique , Facteurs de transcription/métabolisme , Danio zébré , Acide gamma-amino-butyrique/métabolisme
11.
Nat Chem Biol ; 12(7): 504-10, 2016 07.
Article de Anglais | MEDLINE | ID: mdl-27159579

RÉSUMÉ

Bromodomain-containing proteins of the BET family recognize histone lysine acetylation and mediate transcriptional activation of target genes such as the MYC oncogene. Pharmacological inhibitors of BET domains promise therapeutic benefits in a variety of cancers. We performed a high-diversity chemical compound screen for agents capable of modulating BRD4-dependent heterochromatization of a generic reporter in human cells. In addition to known and new compounds targeting BRD4, we identified small molecules that mimic BRD4 inhibition without direct engagement. One such compound was a potent inhibitor of the second bromodomain of TAF1. Using this inhibitor, we discovered that TAF1 synergizes with BRD4 to control proliferation of cancer cells, making TAF1 an attractive epigenetic target in cancers driven by MYC.


Sujet(s)
Chromatine/composition chimique , Histone acetyltransferases/antagonistes et inhibiteurs , Histone acetyltransferases/métabolisme , Protéines nucléaires/antagonistes et inhibiteurs , Protéines nucléaires/métabolisme , Bibliothèques de petites molécules/pharmacologie , Facteurs associés à la protéine de liaison à la boite TATA/antagonistes et inhibiteurs , Facteurs associés à la protéine de liaison à la boite TATA/métabolisme , Facteur de transcription TFIID/antagonistes et inhibiteurs , Facteur de transcription TFIID/métabolisme , Facteurs de transcription/antagonistes et inhibiteurs , Facteurs de transcription/métabolisme , Protéines du cycle cellulaire , Lignée cellulaire , Prolifération cellulaire/effets des médicaments et des substances chimiques , Chromatine/effets des médicaments et des substances chimiques , Chromatine/génétique , Chromatine/métabolisme , Histone acetyltransferases/composition chimique , Humains , Structure moléculaire , Protéines nucléaires/composition chimique , Domaines protéiques/effets des médicaments et des substances chimiques , Bibliothèques de petites molécules/composition chimique , Facteurs associés à la protéine de liaison à la boite TATA/composition chimique , Facteur de transcription TFIID/composition chimique , Facteurs de transcription/composition chimique
12.
Curr Biol ; 22(16): 1516-23, 2012 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-22818914

RÉSUMÉ

The accumulation of γ-tubulin at the centrosomes during maturation is a key mechanism that ensures the formation of two dense microtubule (MT) asters in cells entering mitosis, defining spindle pole positioning and ensuring the faithful outcome of cell division. Centrosomal γ-tubulin recruitment depends on the adaptor protein NEDD1/GCP-WD and is controlled by the kinase Plk1. Surprisingly, and although Plk1 binds and phosphorylates NEDD1 at multiple sites, the mechanism by which this kinase promotes the centrosomal recruitment of γ-tubulin has remained elusive. Using Xenopus egg extracts and mammalian cells, we now show that it involves Nek9, a NIMA-family kinase required for normal mitotic progression and spindle organization. Nek9 phosphorylates NEDD1 on Ser377 driving its recruitment and thereby that of γ-tubulin to the centrosome in mitotic cells. This role of Nek9 requires its activation by Plk1-dependent phosphorylation but is independent from the downstream related kinases Nek6 and Nek7. Our data contribute to understand the mechanism by which Plk1 promotes the recruitment of γ-tubulin to the centrosome in dividing cells and position Nek9 as a key regulator of centrosome maturation.


Sujet(s)
Protéines du cycle cellulaire/métabolisme , Protéines associées aux microtubules/métabolisme , Mitose , Protein-Serine-Threonine Kinases/métabolisme , Protéines proto-oncogènes/métabolisme , Tubuline/métabolisme , Animaux , Centrosome/physiologie , Cellules HeLa , Humains , Souris , Microtubules/physiologie , Kinases apparentées à NIMA , Phosphorylation , Lapins , Xenopus , Polo-Like Kinase 1
14.
EMBO J ; 30(13): 2634-47, 2011 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-21642957

RÉSUMÉ

The NIMA-family kinases Nek9/Nercc1, Nek6 and Nek7 form a signalling module required for mitotic spindle assembly. Nek9, the upstream kinase, is activated during prophase at centrosomes although the details of this have remained elusive. We now identify Plk1 as Nek9 direct activator and propose a two-step activation mechanism that involves Nek9 sequential phosphorylation by CDK1 and Plk1. Furthermore, we show that Plk1 controls prophase centrosome separation through the activation of Nek9 and ultimately the phosphorylation of the mitotic kinesin Eg5 at Ser1033, a Nek6/7 site that together with the CDK1 site Thr926 we establish contributes to the accumulation of Eg5 at centrosomes and is necessary for subsequent centrosome separation and timely mitosis. Our results provide a basis to understand signalling downstream of Plk1 and shed light on the role of Eg5, Plk1 and the NIMA-family kinases in the control of centrosome separation and normal mitotic progression.


Sujet(s)
Protéines du cycle cellulaire/physiologie , Centrosome/métabolisme , Kinésine/physiologie , Protein-Serine-Threonine Kinases/physiologie , Protéines proto-oncogènes/physiologie , Cycle cellulaire/effets des médicaments et des substances chimiques , Cycle cellulaire/génétique , Protéines du cycle cellulaire/antagonistes et inhibiteurs , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Cellules cultivées , Centrosome/effets des médicaments et des substances chimiques , Centrosome/physiologie , Activation enzymatique/effets des médicaments et des substances chimiques , Activation enzymatique/génétique , Activation enzymatique/physiologie , Techniques de knock-down de gènes , Cellules HeLa , Humains , Kinésine/antagonistes et inhibiteurs , Kinésine/génétique , Kinésine/métabolisme , Mitose/effets des médicaments et des substances chimiques , Mitose/génétique , Mitose/physiologie , Kinases apparentées à NIMA , Phosphorylation/effets des médicaments et des substances chimiques , Phosphorylation/génétique , Phosphorylation/physiologie , Protein-Serine-Threonine Kinases/antagonistes et inhibiteurs , Protein-Serine-Threonine Kinases/génétique , Protein-Serine-Threonine Kinases/métabolisme , Protéines proto-oncogènes/antagonistes et inhibiteurs , Protéines proto-oncogènes/génétique , Protéines proto-oncogènes/métabolisme , Petit ARN interférent/pharmacologie , Transduction du signal/effets des médicaments et des substances chimiques , Transduction du signal/génétique , Transduction du signal/physiologie , Transfection , Polo-Like Kinase 1
15.
J Biol Chem ; 286(20): 18118-29, 2011 May 20.
Article de Anglais | MEDLINE | ID: mdl-21454704

RÉSUMÉ

The NIMA family protein kinases Nek9/Nercc1 and the highly similar Nek6 and Nek7 form a signaling module activated in mitosis, when they are involved in the control of spindle organization and function. Here we report that Nek9, the module upstream kinase, binds to DYNLL/LC8, a highly conserved protein originally described as a component of the dynein complex. LC8 is a dimer that interacts with different proteins and has been suggested to act as a dimerization hub promoting the organization and oligomerization of partially disorganized partners. We find that the interaction of LC8 with Nek9 depends on a (K/R)XTQT motif adjacent to the Nek9 C-terminal coiled coil motif, results in Nek9 multimerization, and increases the rate of Nek9 autoactivation. LC8 binding to Nek9 is regulated by Nek9 activity through the autophosphorylation of Ser(944), a residue immediately N-terminal to the (K/R)XTQT motif. Remarkably, LC8 binding interferes with the interaction of Nek9 with its downstream partner Nek6 as well as with Nek6 activation, thus controlling both processes. Our work sheds light into the control of signal transduction through the module formed by Nek9 and Nek6/7 and uncovers a novel manner in which LC8 can regulate partner physiology by interfering with protein complex formation. We suggest that this and other LC8 functions can be specifically regulated by partner phosphorylation.


Sujet(s)
Dynéines cytoplasmiques/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Transduction du signal/physiologie , Motifs d'acides aminés , Dynéines cytoplasmiques/génétique , Activation enzymatique , Humains , Kinases apparentées à NIMA , Phosphorylation , Protein-Serine-Threonine Kinases/génétique , Appareil du fuseau/génétique , Appareil du fuseau/métabolisme
16.
Exp Hematol ; 37(10): 1176-1185.e21, 2009 Oct.
Article de Anglais | MEDLINE | ID: mdl-19615424

RÉSUMÉ

OBJECTIVE: This study aimed to investigate the mechanisms of action of WEB-2170, an inverse agonist of platelet-activating factor receptor, capable of inducing apoptosis in human acute myelogenous leukemia (AML) cells. MATERIAL AND METHODS: Gene expression profiling followed by cytofluorimetric, morphologic, and biologic analyses were used to monitor WEB-2170 effects in AML cell lines (ie, NB4, KG1, NB4-MR4, THP1, and U937) and blasts from patients with different AML (M0-M5) subtypes. PTEN silencing with small interfering RNA was also performed. RESULTS: We have demonstrated that drug-mediated cytostasis/apoptosis in NB4 cells is characterized by upregulation of cyclin G2, p21/WAF1, NIX, TNF-alpha, and PTEN expression, and downregulation of cyclin D2 and BCL2 expression. We observed an increase in PTEN protein accompanied by a decrease in phospho-extracellular signal-regulated kinase 2 (ERK2) and phospho-AKT, and by forkhead box O3a (FOXO3a) cytoplasmic-nuclear translocation; the mitochondrial cytochrome C release and PARP cleavage marked the late apoptotic steps. We have found that WEB-2170 triggered apoptosis in NB4, KG1, and NB4-MR4 cells where PTEN was expressed, but not in THP1 and U937 cells where PTEN was absent. Finally, we show that PTEN silencing in NB4 cells by PTEN-specific small interfering RNA resulted in a significant reduction of drug-induced apoptosis. CONCLUSION: We demonstrated that WEB-2170 is a powerful antileukemic agent with interesting translational opportunities to treat AML and described mechanisms of drug-induced intrinsic and extrinsic apoptosis both in AML cell lines and blasts from AML patients by addressing PTEN as the master regulator of the whole process.


Sujet(s)
Antinéoplasiques/pharmacologie , Apoptose/effets des médicaments et des substances chimiques , Azépines/pharmacologie , Leucémie myéloïde/anatomopathologie , Protéines tumorales/physiologie , Phosphohydrolase PTEN/physiologie , Triazoles/pharmacologie , Maladie aigüe , Adulte , Sujet âgé , Apoptose/physiologie , Lignée cellulaire tumorale/effets des médicaments et des substances chimiques , Femelle , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes dans la leucémie/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes dans la leucémie/physiologie , Humains , Mâle , Adulte d'âge moyen , Protéines tumorales/antagonistes et inhibiteurs , Protéines tumorales/biosynthèse , Protéines tumorales/génétique , Cellules souches tumorales/effets des médicaments et des substances chimiques , Cellules souches tumorales/anatomopathologie , Phosphohydrolase PTEN/antagonistes et inhibiteurs , Phosphohydrolase PTEN/biosynthèse , Phosphohydrolase PTEN/génétique , Phosphorylation/effets des médicaments et des substances chimiques , Réaction de polymérisation en chaîne , Maturation post-traductionnelle des protéines/effets des médicaments et des substances chimiques , Transport des protéines/effets des médicaments et des substances chimiques , Interférence par ARN , Petit ARN interférent/pharmacologie , Phase G0/effets des médicaments et des substances chimiques , Jeune adulte
17.
J Immunol ; 180(6): 4166-72, 2008 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-18322228

RÉSUMÉ

CSF-1, by binding to its high-affinity receptor CSF-1R, sustains the survival and proliferation of monocyte/macrophages, which are central cells of innate immunity and inflammation. The MAPK ERK5 (also known as big MAPK-1, BMK1, or MAPK7) is a 98-kDa molecule sharing high homology with ERK1/2. ERK5 is activated by oxidative stress or growth factor stimulation. This study was undertaken to characterize ERK5 involvement in macrophage signaling that is elicited by CSF-1. Exposure to the CSF-1 of primary human macrophages or murine macrophage cell lines, as well as murine fibroblasts expressing ectopic CSF-1R, resulted in a rapid and sustained increase of ERK5 phosphorylation on activation-specific residues. In the BAC1.2F5 macrophage cell line, ERK5 was also activated by another mitogen, GM-CSF, while macrophage activators such as LPS or IFN-gamma and a number of nonproliferative cytokines failed. Src family kinases were found to link the activation of CSF-1R to that of ERK5, whereas protein kinase C or the serine phosphatases PP1 and PP2A seem not to be involved in the process. Treatment of macrophages with ERK5-specific small interfering RNA markedly reduced CSF-1-induced DNA synthesis and total c-Jun phosphorylation and expression, while increasing the expression of the cyclin-dependent kinase inhibitor p27. Following CSF-1 treatment, the active form of ERK5 rapidly translocated from cytosol to nucleus. Taken together, the results reported in this study show that ERK5 is indispensable for optimal CSF-1-induced proliferation and indicate a novel target for its control.


Sujet(s)
Prolifération cellulaire , Facteur de stimulation des colonies de macrophages/physiologie , Macrophages/cytologie , Macrophages/enzymologie , Mitogen-Activated Protein Kinase 7/physiologie , src-Family kinases/physiologie , Animaux , Lignée de cellules transformées , Lignée cellulaire tumorale , Activation enzymatique/immunologie , Humains , Macrophages/métabolisme , Souris , Cellules NIH 3T3 , Récepteur du facteur de stimulation des colonies de macrophages/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE