Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cell Signal ; 36: 163-175, 2017 08.
Article de Anglais | MEDLINE | ID: mdl-28487119

RÉSUMÉ

Apoptosis and the response to cell stress are evolutionary highly conserved mechanisms. Both processes require strict regulation, which is often performed by protein kinases. The mammalian Sterile 20-like kinase 1 (MST1) is a pro-apoptotic protein kinase, which is activated and cleaved by caspases upon the induction of cell stress. Being a phosphoprotein itself, the activity of MST1 is regulated by phosphorylation. Protein kinase CK2 is an anti-apoptotic protein kinase which seems to be involved in the regulation of many different cellular processes including apoptosis. There is increasing evidence that the cleavage of many substrates by caspases is regulated by phosphorylation in the close vicinity of the caspase cleavage sites. One of these kinases, implicated in the phosphorylation of caspase substrates, is protein kinase CK2. Here, we report that serine 320 of the MST1 protein is a novel phosphorylation site for the anti-apoptotic protein kinase CK2. Although serine 320 is in close vicinity to the caspase 3 cleavage site, caspase 3 cleavage of MST1 is not affected by CK2 phosphorylation. Using biochemical approaches, we were able to show that MST1 co-localizes with the CK2 subunits in the pancreatic ß-cell line INS-1 and that full-length MST1 and the activated N-terminal fragment of MST1 both interacted with the CK2 subunits in vitro and in vivo. MST1 is a basophilic kinase whereas CK2 is an acidophilic kinase. Thus, binding of these two kinases in the cytosol and in the nucleus opens the door to the phosphorylation of a variety of new substrates.


Sujet(s)
Apoptose , Casein Kinase II/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Séquence d'acides aminés , Caspase-3/métabolisme , Lignée cellulaire , Humains , Phosphorylation , Phosphosérine/métabolisme , Liaison aux protéines , Spécificité du substrat
2.
PLoS One ; 8(12): e82058, 2013.
Article de Anglais | MEDLINE | ID: mdl-24324744

RÉSUMÉ

How misfolded proteins are exported from the ER to the cytosol for degradation (ER-associated Degradation, ERAD) and which proteins are participating in this process is not understood. Several studies using a single, leaky mutant indicated that Sec63p might be involved in ERAD. More recently, Sec63p was also found strongly associated with proteasomes attached to the protein-conducting channel in the ER membrane which presumably form part of the export machinery. These observations prompted us to reinvestigate the role of Sec63p in ERAD by generating new mutants which were selected in a screen monitoring the intracellular accumulation of the ERAD substrate CPY*. We show that a mutation in the DnaJ-domain of Sec63p causes a defect in ERAD, whereas mutations in the Brl, acidic, and transmembrane domains only affect protein import into the ER. Unexpectedly, mutations in the acidic domain which mediates interaction of Sec63p with Sec62p also caused defects in cotranslational import. In contrast to mammalian cells where SEC63 expression levels affect steady-state levels of multi-spanning transmembrane proteins, the sec63 J-domain mutant was only defective in ERAD of soluble substrates.


Sujet(s)
Dégradation associée au réticulum endoplasmique , Protéines du choc thermique/composition chimique , Protéines du choc thermique/métabolisme , Protéines de transport membranaire/composition chimique , Protéines de transport membranaire/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/métabolisme , Cathepsine A/métabolisme , Dégradation associée au réticulum endoplasmique/effets des médicaments et des substances chimiques , Stabilité enzymatique/effets des médicaments et des substances chimiques , Protéines mutantes/isolement et purification , Protéines mutantes/métabolisme , Mutation/génétique , Maturation post-traductionnelle des protéines/effets des médicaments et des substances chimiques , Structure tertiaire des protéines , Transport des protéines/effets des médicaments et des substances chimiques , Saccharomyces cerevisiae/effets des médicaments et des substances chimiques , Saccharomyces cerevisiae/croissance et développement , Solubilité , Relation structure-activité , Spécificité du substrat/effets des médicaments et des substances chimiques , Température , Tunicamycine/pharmacologie
3.
Int J Biochem Cell Biol ; 45(12): 2786-95, 2013 Dec.
Article de Anglais | MEDLINE | ID: mdl-24126110

RÉSUMÉ

The pancreatic duodenal homeodomain transcription factor PDX-1 plays a pivotal role in the development of the pancreas and the maintenance of glucose homeostasis by pancreatic ß-cells. Recently, we found that the highly conserved, ubiquitously expressed tetrameric Ser/Thr protein kinase CK2, which is formed by two catalytic subunits (α and/or α') and two non-catalytic subunits (ß), phosphorylates PDX-1. So far, only little is known about CK2 in pancreatic ß-cells and how this enzyme is regulated in these cells. In the present study, we found that (i) CK2 binds to PDX-1, (ii) the binding between CK2 and PDX-1 is regulated by glucose, (iii) glucose modulates the subcellular localization of PDX-1 and CK2 and (iv) the kinase activity is also regulated by glucose. Our novel data indicate that CK2 is a co-factor of PDX-1 in response to glucose in pancreatic ß-cells.


Sujet(s)
Casein Kinase II/métabolisme , Glucose/métabolisme , Protéines à homéodomaine/métabolisme , Cellules à insuline/métabolisme , Pancréas/anatomopathologie , Transactivateurs/métabolisme , Animaux , Lignée cellulaire , Protéines à homéodomaine/génétique , Souris , Souris de lignée C57BL , Pancréas/métabolisme , Phosphorylation , Protein-Serine-Threonine Kinases/composition chimique , Protein-Serine-Threonine Kinases/métabolisme , Transactivateurs/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...