Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Plants (Basel) ; 12(9)2023 May 06.
Article de Anglais | MEDLINE | ID: mdl-37176956

RÉSUMÉ

This study aimed to investigate the influence of water availability and nitrogen fertilization on plant growth, nutrient dynamics, and variables related to soybean crop yield. Trials were performed in Teresina, Piauí, Brazil, using randomized blocks in a split-split plot arrangement. The plots corresponded to water regimes (full and deficient), the split plots to N fertilization (0 and 1000 kg ha-1 N-urea), and the split-split plots to harvest times of soybean plants (16, 23, 30, 37, 44, 58, 65, 79 and 86 days after emergence), with three replicates. In general, the accumulation and partitioning of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulphur (S), copper (Cu), iron (Fe), manganese (Mn), zinc (Zn) and boron (B) were decreased in plants subjected to water deficit and without N fertilization. Although nitrogen fertilization promoted elevated N accumulation in tissues, it did not result in any significant yield gain, and the highest seed yields were found in plants under full irrigation, regardless of N supplementation. However, deficient irrigation decreased the seed oil content of N-fertilized plants. In conclusion, N fertilization is critical for nutrient homeostasis, and water availability impairs biomass and nutrient accumulation, thereby limiting soybean yield performance.

2.
3 Biotech ; 12(10): 246, 2022 Oct.
Article de Anglais | MEDLINE | ID: mdl-36033911

RÉSUMÉ

Excess aluminum (Al) is a stressful condition that affects plant growth and yield quality. This study evaluates growth responses and changes in the contents of photosynthetic pigments and organic solute in maize (Zea mays L.) plants inoculated with Trichoderma asperelloides isolates (T01, T02, T74, T76, or T96) and treated with increasing doses of Al (0, 50, 100, 150, and 200 µM of Al). Uninoculated unstressed plants served as control. Absolute growth rate, root length, dry biomass (shoot, roots and total) and shoot:root ratio were significantly affected in Al-stressed maize plants inoculated with T. asperelloides. Also, chlorophylls (a, b and total) were significantly reduced, whereas carotenoids and anthocyanins increased in those plants. Except for carotenoids, all parameters increased in plants inoculated with T. asperelloides, especially T01 or T02 isolates. Anthocyanins increased by 50% in plants inoculated with T74 and treated with 100 or 150 µM Al as compared to control plants. Total soluble carbohydrates increased by 74% and 101% in plants inoculated with T74 and T76, respectively, and treated with 200 µM Al. Total free amino acids increased more than 50% in plants inoculated with T02 and treated with 150 and 200 µM Al. Free prolines increased by 90%, 145% and 165% in plants inoculated with T74 and treated 100, 150 and 200 µM Al, respectively, in comparison to the unstressed control plants. We concluded that T. asperelloides positively affected growth, photosynthetic pigments, and organic solutes of Al-stressed plants, especially those inoculated with T01, T02, or T74 isolates. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03310-3.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...