RÉSUMÉ
The striped cucumber beetle, Acalymma vittatum (Fabricius), is an important pest of cucurbit production in the eastern United States, where most commercial producers rely on insecticides to control this pest species. Biological control provides an alternative to insecticide use, but for A. vittatum, top-down control has not been well developed. In the northeastern United States, two parasitoid species, Celatoria setosa (Coquillett) (Diptera: Tachinidae) and Centistes diabroticae (Gahan) (Hymenoptera: Braconidae) have been reported from A. vittatum, but their distribution is poorly known. To determine whether these parasitoid species are attacking A. vittatum in Pennsylvania and the amount of mortality they provide, we characterized the parasitoid dynamics in two distinct efforts. First, we reared parasitoids from beetles captured at two research farms. Second, we focused on one of these farms and dissected beetles to quantify both parasitoid and parasite species attacking A. vittatum. Both efforts confirmed Cl. setosa and Cn. diabroticae, and parasitism rates varied widely between locations and among years (4-60%). Unexpectedly, our dissections revealed that a potentially undescribed nematode species (Howardula sp.) as the most common parasite in the community. We also discovered gregarine protists. Despite being smaller than females, males were more commonly attacked by parasitic species, but we detected no relationship between the size of beetles and abundance of parasitic species in A. vittatum. This work provides a baseline understanding of the parasitoid and parasite community attacking A. vittatum and advances opportunities for conservation biological control using these natural-enemy species.
Sujet(s)
Coléoptères , Cucumis sativus , Insecticides , Nematoda , Animaux , Femelle , Mâle , Pennsylvanie , Lutte biologique contre les nuisiblesRÉSUMÉ
Fall armyworm [Spodoptera frugiperda (J. E. Smith)] is a major economic pest throughout the Western Hemisphere of maize, cotton, sorghum, and a variety of agricultural grasses and vegetable crops. Previous studies demonstrated extensive annual migrations occurring as far north as Canada from overwintering locations in southern Florida and Texas. In contrast, migratory behavior in the rest of the hemisphere is largely uncharacterized. Understanding the migration patterns of fall armyworm will facilitate efforts to predict the spread of pesticide resistance traits that repeatedly arise in this species and assess the consequences of changing climatic trends on the infestation range. Four independent fall armyworm colonies derived from widely separated populations in Mexico and two field collections were examined for their mitochondrial cytochrome oxidase I (COI) gene haplotypes and compared with other locations. The Mexico populations were most similar in their haplotype profile to those from Texas and South America, but also displayed some distinctive features. The data extend the haplotype distribution map in the Western Hemisphere and confirm that the previously observed regional differences in haplotype frequencies are stable over time. The Mexico collections were associated with haplotypes rarely found elsewhere, suggesting limited migratory interactions with foreign populations, including those in neighboring Texas.
Sujet(s)
Migration animale , Haplotypes , Spodoptera/génétique , Animaux , Complexe IV de la chaîne respiratoire/génétique , Femelle , Mâle , Amérique du Nord , Phylogéographie , Amérique du Sud , Zea maysRÉSUMÉ
The invasive Argentine ant (Linepithema humile) is established worldwide and displaces native ant species. In northern California, however, the native winter ant (Prenolepis imparis) persists in invaded areas. We found that in aggressive interactions between the two species, P. imparis employs a potent defensive secretion. Field observations were conducted at P. imparis nest sites both in the presence and absence of L. humile. These observations suggested and laboratory assays confirmed that P. imparis workers are more likely to secrete when outnumbered by L. humile. Workers of P. imparis were also more likely to secrete near their nest entrances than when foraging on trees. One-on-one laboratory trials showed that the P. imparis secretion is highly lethal to L. humile, causing 79% mortality. The nonpolar fraction of the secretion was chemically analyzed with gas chromatography/mass spectrometry, and found to be composed of long-chain and cyclic hydrocarbons. Chemical analysis of dissected P. imparis workers showed that the nonpolar fraction is derived from the Dufour's gland. Based on these conclusions, we hypothesize that this chemical defense may help P. imparis to resist displacement by L. humile.
Sujet(s)
Fourmis/composition chimique , Fourmis/physiologie , Espèce introduite , Saisons , Agressivité/physiologie , Animaux , Argentine , Comportement animal/physiologie , Comportement de nidification/physiologie , Analyse de survieRÉSUMÉ
Although vegetable amaranth, Amaranthus viridis L. and A. dubius Mart. ex Thell., production and economic importance is increasing in diversified peri-urban farms in Jamaica, lepidopteran herbivory is common even during weekly pyrethroid applications. We developed and validated a sampling plan, and investigated insecticides with new modes of action, for a complex of five species (Pyralidae: Spoladea recurvalis (F.), Herpetogramma bipunctalis (F.), Noctuidae: Spodoptera exigua (Hubner), S. frugiperda (J. E. Smith), and S. eridania Stoll). Significant within-plant variation occurred with H. bipunctalis, and a six-leaf sample unit including leaves from the inner and outer whorl was selected to sample all species. Larval counts best fit a negative binomial distribution. We developed a sequential sampling plan using a threshold of one larva per sample unit and the fitted distribution with a k(c) of 0.645. When compared with a fixed plan of 25 plants, sequential sampling recommended the same management decision on 87.5%, additional samples on 9.4%, and gave inaccurate recommendations on 3.1% of 32 farms, while reducing sample size by 46%. Insecticide frequency was reduced 33-60% when management decisions were based on sampled data compared with grower-standards, with no effect on crop damage. Damage remained high or variable (10-46%) with pyrethroid applications. Lepidopteran control was dramatically improved with ecdysone agonists (tebufenozide) or microbial metabolites (spinosyns and emamectin benzoate). This work facilitates resistance management efforts concurrent with the introduction of newer modes of action for lepidopteran control in leafy vegetable production in the Caribbean.