Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Vasc Surg ; 42(5): 980-8, 2005 Nov.
Article de Anglais | MEDLINE | ID: mdl-16275457

RÉSUMÉ

OBJECTIVE: We tested the hypothesis that rapamycin coated onto, and eluted from, expanded polytetrafluoroethylene (ePTFE) grafts would diminish neointimal hyperplasia in a porcine model. METHODS: Rapamycin (also called sirolimus) was coated onto the luminal surface of 6-mm-internal-diameter thin-walled ePTFE grafts by using an adhesive polymer that allows timed release of the drug. An adhesive polymer that allows timed release of rapamycin from ePTFE was developed with commercially available chemicals and applied on 6-mm ePTFE grafts. Graft integrity was characterized by scanning electron microscopy, and rapamycin levels were quantified by using high-performance liquid chromatography. Twenty-two mongrel pigs were randomized into three groups: untreated ePTFE (n = 6), adhesive-only coated ePTFE (n = 6), or adhesive- and rapamycin-coated ePTFE (n = 10). End-to-side unilateral aortoiliac bypasses were performed by using 6-mm-internal-diameter ePTFE grafts and standardized anastomotic lengths. Unilateral end-to-side aortoiliac ePTFE grafts (6-mm internal diameter) were inserted by using polypropylene sutures, 6-0 proximally and 7-0 distally; all anastomoses were 12 mm long. All animals received aspirin (325 mg orally) daily. All animals were given oral aspirin (325 mg) daily beginning on the day before surgery. At 28 days, the animals were killed, and the grafts were explanted in continuity with the adjacent aortic cuff and the outflow iliac artery. Variables compared between groups included graft patency, distal anastomotic length and cross-sectional narrowing, and intimal thickness at the arterial-graft junction indexed to the adjacent graft thickness. Microscopic analysis was performed with hematoxylin and eosin and Masson trichrome stains on paraffin sections. A pathologist blinded to experimental groups graded sections for collagen deposition, neointima formation, inflammatory cellular infiltrates, medial necrosis, and aneurysmal degeneration. RESULTS: All animals survived until they were killed without clinical evidence of limb ischemia or graft infection. Preplanned t tests in the context of one-way analysis of variance showed no difference in outcome measures between the untreated ePTFE and adhesive-only coated ePTFE groups; therefore, they were combined in further comparisons with the adhesive- and rapamycin-coated ePTFE group. The Rapamycine eluting expanded polytetrafluoroethylene group had longer anastomoses (85.6% vs 60.6% of the initial anastomotic length maintained; P < .0001) and less cross-sectional narrowing in the outflow graft (16.2% vs 28.5%; P = .0007) when compared with the other two groups by using two-tailed Student t tests. There was no evidence of medial necrosis or aneurysmal degeneration. All patent grafts had complete endothelialization on hematoxylin and eosin sections. Rapamycin was detectable and quantifiable in the arterial wall at 28 days after implantation. CONCLUSIONS: Rapamycin can be coated onto and eluted from ePTFE by using a nonionic polymer and a simple coating technique. At 4 weeks after implantation, the rapamycin-eluting ePTFE grafts demonstrate gross, pathologic, and morphometric features of diminished neointimal hyperplasia when compared with non-drug-eluting ePTFE. Four weeks after implantation in a porcine model, rapamycin-eluting ePTFE grafts demonstrated gross, pathologic, and morphometric features of diminished neointimal hyperplasia when compared with untreated and adhesive-only coated ePTFE grafts. CLINICAL RELEVANCE: Rapamycin-eluting ePTFE grafts decrease neointimal hyperplasia in a porcine model. Further studies are needed to evaluate whether patency will be improved. Rapamycin-eluting ePTFE grafts may allow the use of prosthetic grafts in situations in which autologous vein is unavailable and in which neointimal hyperplasia is pronounced, such as in small-diameter (<6-mm) vessels typical of infrapopliteal interventions.


Sujet(s)
Prothèse vasculaire , Matériaux revêtus, biocompatibles , Occlusion du greffon vasculaire/prévention et contrôle , Immunosuppresseurs/usage thérapeutique , Polytétrafluoroéthylène , Sirolimus/usage thérapeutique , Tunique intime/ultrastructure , Anastomose chirurgicale , Animaux , Implantation de prothèses vasculaires/instrumentation , Occlusion du greffon vasculaire/anatomopathologie , Hyperplasie/anatomopathologie , Hyperplasie/prévention et contrôle , Mâle , Microscopie électronique à balayage
2.
Ann Surg ; 241(6): 995-1001; discussion 1001-4, 2005 Jun.
Article de Anglais | MEDLINE | ID: mdl-15912049

RÉSUMÉ

OBJECTIVE: As a vascular conduit, expanded polytetrafluoroethylene (ePTFE) is susceptible to graft infection with Gram-positive organisms. Biomaterials, such as porcine small-intestinal submucosa (SIS), have been successfully used clinically as tissue substitutes outside the vascular arena. SUMMARY BACKGROUND DATA: In the present study, we compared a small-diameter conduit of SIS to ePTFE in the presence of Gram-positive contamination to evaluate infection resistance, incorporation and remodeling, morphometry, graft patency, and neointimal hyperplasia (NH) development. METHODS: Adult male mongrel pigs were randomized to receive either SIS or ePTFE (3-cm length, 6-mm diameter) and further randomized to 1 of 3 groups: Control (no graft inoculation), Staphylococcus aureus, or mucin-producing S epidermidis (each graft inoculation with 10 colonies/mL). Pressure measurements were obtained proximal and distal to the graft to create the iliac/aorta pressure ratio. Morphometric analysis of the neointima and histopathologic examinations was performed. Other outcomes included weekly WBC counts, graft incorporation, and quantitative culture of explanted grafts. RESULTS: Eighteen animals were randomized. All grafts were patent throughout the 6-week study period. Infected SIS grafts had less NH and little change in their iliac/aorta indices compared with infected ePTFE grafts. Quantitative cultures at euthanasia demonstrated no growth in either SIS group compared with 1.7 x 10(4) colonies for ePTFE S aureus and 6 x 10(2) for ePTFE S epi (each P < 0.001). All SIS grafts were incorporated. Histology demonstrated remodeling into host artery with smooth muscle and capillary ingrowth in all SIS groups. Scanning electron micrography illustrated smooth and complete endothelialization of all SIS grafts. CONCLUSIONS: Compared with ePTFE, SIS induces host tissue remodeling, exhibits a decreased neointimal response to infection, and is resistant to bacterial colonization. SIS may provide a superior alternative to ePTFE as a vascular conduit for peripheral vascular surgery.


Sujet(s)
Matériaux biocompatibles , Prothèse vasculaire/microbiologie , Muqueuse intestinale/transplantation , Animaux , Hyperplasie , Mâle , Polytétrafluoroéthylène/usage thérapeutique , Suidae , Tunique intime/anatomopathologie
3.
Ann Surg ; 239(5): 733-8; discussion 738-40, 2004 May.
Article de Anglais | MEDLINE | ID: mdl-15082978

RÉSUMÉ

INTRODUCTION: Surgical options for vascular reconstruction in a contaminated field are limited and include prosthetic reconstruction or ligation with extra-anatomic bypass. With prosthetic insertion, rates of graft infection and failures (pseudoaneurysms and thrombosis) are high. In the emergent situations, extra-anatomic bypass is time-consuming and complex, and it produces marginal long-term results. Small intestinal submucosa (SIS) is a cell-free collagen matrix derived from porcine small intestine. Preliminary studies have demonstrated its ability to be remodeled into host tissue. In this study, we compared SIS to polytetrafluoroethylene (PTFE) as a vascular patch for arterial repair in the presence of massive gastrointestinal contamination to evaluate graft patency, incorporation, infection, and aneurysm formation. METHODS: Adult mongrel pigs underwent general anesthesia with Isoflurane and were then randomized to 1 of 3 groups: control, contamination (colon puncture with stool contamination of the pelvis), or shock + contamination (40% blood volume for 1 hour, then resuscitation with shed blood and crystalloid, plus contamination). All groups then underwent a left common iliac arteriotomy and further randomized to a 1 x 3-cm patch angioplasty with either SIS or PTFE. All received cefotetan for 24 hours. All animals were sacrificed between 2 and 4 weeks, and necropsy was performed. Grafts were cultured, and microscopic analysis with hematoxylin and eosin and trichrome was performed. Outcomes included pulse quality (normal or diminished) compared with opposite side, graft infection, and pseudoaneurysm; all were determined by a blinded investigator. RESULTS: Forty animals were randomized, and 1 died of abdominal sepsis. All control animals had normal distal pulses, no pseudoaneurysms, and no patch infections. The pseudoaneurysm rate for the contaminated PTFE patches was 25% compared with 0% in the SIS group (P = 0.09). Patch infection occurred in 73% of all PTFE patches compared with 8% of SIS patches (P < 0.03). Organisms present in the infected grafts included Escherichia coli, Bacteroides species, and other Gram-negative enterics. Histopathology demonstrated the presence of neointima in both SIS and PTFE. Only SIS was completely incorporated, with infiltration of collagen fibrils and lymphocytes. CONCLUSIONS: SIS was associated with improved graft patency, less infection, complete incorporation, and no false aneurysm formation when compared with PTFE. This may be due to its ability to provide a durable scaffold for cellularization and tissue remodeling. This material may offer a superior alternative to more complex vascular reconstruction techniques in contaminated fields.


Sujet(s)
Implantation de prothèses vasculaires , Muqueuse intestinale/transplantation , Animaux , Matériaux biocompatibles , Système digestif/microbiologie , Artère iliaque/chirurgie , Régénération , Suidae , Ingénierie tissulaire
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE