Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Science ; 380(6648): 972-979, 2023 06 02.
Article de Anglais | MEDLINE | ID: mdl-37262147

RÉSUMÉ

The suprachiasmatic nucleus (SCN) drives circadian clock coherence through intercellular coupling, which is resistant to environmental perturbations. We report that primary cilia are required for intercellular coupling among SCN neurons to maintain the robustness of the internal clock in mice. Cilia in neuromedin S-producing (NMS) neurons exhibit pronounced circadian rhythmicity in abundance and length. Genetic ablation of ciliogenesis in NMS neurons enabled a rapid phase shift of the internal clock under jet-lag conditions. The circadian rhythms of individual neurons in cilia-deficient SCN slices lost their coherence after external perturbations. Rhythmic cilia changes drive oscillations of Sonic Hedgehog (Shh) signaling and clock gene expression. Inactivation of Shh signaling in NMS neurons phenocopied the effects of cilia ablation. Thus, cilia-Shh signaling in the SCN aids intercellular coupling.


Sujet(s)
Cils vibratiles , Horloges circadiennes , Rythme circadien , Protéines Hedgehog , Neurones du noyau suprachiasmatique , Animaux , Souris , Cils vibratiles/métabolisme , Cils vibratiles/physiologie , Horloges circadiennes/génétique , Rythme circadien/physiologie , Protéines Hedgehog/génétique , Protéines Hedgehog/métabolisme , Neurones du noyau suprachiasmatique/physiologie , Transduction du signal , Régulation de l'expression des gènes , Souris transgéniques
2.
J Cell Biol ; 221(1)2022 01 03.
Article de Anglais | MEDLINE | ID: mdl-34813648

RÉSUMÉ

Primary cilia transduce diverse signals in embryonic development and adult tissues. Defective ciliogenesis results in a series of human disorders collectively known as ciliopathies. The CP110-CEP97 complex removal from the mother centriole is an early critical step for ciliogenesis, but the underlying mechanism for this step remains largely obscure. Here, we reveal that the linear ubiquitin chain assembly complex (LUBAC) plays an essential role in ciliogenesis by targeting the CP110-CEP97 complex. LUBAC specifically generates linear ubiquitin chains on CP110, which is required for CP110 removal from the mother centriole in ciliogenesis. We further identify that a pre-mRNA splicing factor, PRPF8, at the distal end of the mother centriole acts as the receptor of the linear ubiquitin chains to facilitate CP110 removal at the initial stage of ciliogenesis. Thus, our study reveals a direct mechanism of regulating CP110 removal in ciliogenesis and implicates the E3 ligase LUBAC as a potential therapy target of cilia-associated diseases, including ciliopathies and cancers.


Sujet(s)
Protéines du cycle cellulaire/métabolisme , Centrioles/métabolisme , Cils vibratiles/métabolisme , Protéines associées aux microtubules/métabolisme , Organogenèse , Phosphoprotéines/métabolisme , Ubiquitine/métabolisme , Animaux , Lignée cellulaire , Humains , Souris , Complexes multiprotéiques , Protéines de liaison à l'ARN/métabolisme , Spécificité du substrat , Ubiquitination , Danio zébré
3.
Ying Yong Sheng Tai Xue Bao ; 32(8): 2713-2721, 2021 Aug.
Article de Chinois | MEDLINE | ID: mdl-34664443

RÉSUMÉ

In order to explore the impacts of different tillage managements on the structure and diversity of microbial community in fluvo-aquic soil, the phospholipid fatty acid (PLFA) method was used to determine microbial community composition in soil aggregates. Four tillage treatments were set up in Qihe County, Shandong Province, including rotary tillage with straw return (RT), deep ploughing with straw return (DP), subsoiling with straw return (SS) and no-tillage with straw return (NT). Our results showed that DP treatment significantly increased the amount of fungal PLFAs and fungi/bacteria ratio in >5 mm soil aggregates compared with RT. DP could provide favorable conditions for fungi reproduction, facilitate soil organic matter storage and soil buffering capacity. DP increased the amount of PLFAs in 5-2 mm soil aggregates, reduced the gram-positive (G+) /gram-negative (G-) bacteria ratio in the soil, and improved soil nutritional status. In addition, DP improved the microbial abundance index in <0.25 mm soil aggregates. In general, DP could not only increase the abundance of bacteria and fungi in soil aggregates, but also improve the microbial community structure of soil aggregate, which help increase soil carbon sequestration capacity and keep soil microbial diversity to a certain extent. Results of the redundancy analysis showed that the total PLFAs, PLFAs of bacteria, G- bacteria and actinomycetes in soil aggregates are closely correlated with soil organic carbon, while PLFAs of G+ bacteria had a strong correlation with soil total nitrogen concentration. In each treatment, microbial communities in larger sizes of soil aggregates were mainly affected by the ratio of organic carbon to total nitrogen, soil moisture, pH, and mass fractions of soil aggregates, while the microbial communities in smaller sizes of soil aggregates were affected by the concentrations of organic carbon and total nitrogen.


Sujet(s)
Microbiote , Sol , Carbone , Azote/analyse , Microbiologie du sol
4.
Nat Commun ; 12(1): 662, 2021 01 28.
Article de Anglais | MEDLINE | ID: mdl-33510165

RÉSUMÉ

Dynamic assembly and disassembly of primary cilia controls embryonic development and tissue homeostasis. Dysregulation of ciliogenesis causes human developmental diseases termed ciliopathies. Cell-intrinsic regulatory mechanisms of cilia disassembly have been well-studied. The extracellular cues controlling cilia disassembly remain elusive, however. Here, we show that lysophosphatidic acid (LPA), a multifunctional bioactive phospholipid, acts as a physiological extracellular factor to initiate cilia disassembly and promote neurogenesis. Through systematic analysis of serum components, we identify a small molecular-LPA as the major driver of cilia disassembly. Genetic inactivation and pharmacological inhibition of LPA receptor 1 (LPAR1) abrogate cilia disassembly triggered by serum. The LPA-LPAR-G-protein pathway promotes the transcription and phosphorylation of cilia disassembly factors-Aurora A, through activating the transcription coactivators YAP/TAZ and calcium/CaM pathway, respectively. Deletion of Lpar1 in mice causes abnormally elongated cilia and decreased proliferation in neural progenitor cells, thereby resulting in defective neurogenesis. Collectively, our findings establish LPA as a physiological initiator of cilia disassembly and suggest targeting the metabolism of LPA and the LPA pathway as potential therapies for diseases with dysfunctional ciliogenesis.


Sujet(s)
Cils vibratiles/effets des médicaments et des substances chimiques , Lysophospholipides/pharmacologie , Neurogenèse/effets des médicaments et des substances chimiques , Épithélium pigmentaire de la rétine/effets des médicaments et des substances chimiques , Transduction du signal , Animaux , Lignée cellulaire , Prolifération cellulaire/effets des médicaments et des substances chimiques , Prolifération cellulaire/génétique , Cils vibratiles/génétique , Cils vibratiles/métabolisme , Cellules HEK293 , Protéines G hétérotrimériques/métabolisme , Humains , Lysophospholipides/métabolisme , Souris de lignée C57BL , Souris knockout , Cellules souches neurales/cytologie , Cellules souches neurales/effets des médicaments et des substances chimiques , Cellules souches neurales/métabolisme , Neurogenèse/génétique , Liaison aux protéines , Interférence par ARN , Récepteurs à l'acide phosphatidique/génétique , Récepteurs à l'acide phosphatidique/métabolisme , Épithélium pigmentaire de la rétine/cytologie , Épithélium pigmentaire de la rétine/métabolisme
5.
J Cell Biol ; 220(2)2021 02 01.
Article de Anglais | MEDLINE | ID: mdl-33475699

RÉSUMÉ

Primary cilia protrude from the cell surface and have diverse roles during development and disease, which depends on the precise timing and control of cilia assembly and disassembly. Inactivation of assembly often causes cilia defects and underlies ciliopathy, while diseases caused by dysfunction in disassembly remain largely unknown. Here, we demonstrate that CEP55 functions as a cilia disassembly regulator to participate in ciliopathy. Cep55-/- mice display clinical manifestations of Meckel-Gruber syndrome, including perinatal death, polycystic kidneys, and abnormalities in the CNS. Interestingly, Cep55-/- mice exhibit an abnormal elongation of cilia on these tissues. Mechanistically, CEP55 promotes cilia disassembly by interacting with and stabilizing Aurora A kinase, which is achieved through facilitating the chaperonin CCT complex to Aurora A. In addition, CEP55 mutation in Meckel-Gruber syndrome causes the failure of cilia disassembly. Thus, our study establishes a cilia disassembly role for CEP55 in vivo, coupling defects in cilia disassembly to ciliopathy and further suggesting that proper cilia dynamics are critical for mammalian development.


Sujet(s)
Aurora kinase A/métabolisme , Protéines du cycle cellulaire/métabolisme , Cils vibratiles/métabolisme , Animaux , Points de contrôle du cycle cellulaire , Protéines du cycle cellulaire/déficit , Cellules cultivées , Centrosome/métabolisme , Centrosome/ultrastructure , Chaperonine contenant TCP-1/métabolisme , Cils vibratiles/ultrastructure , Troubles de la motilité ciliaire/anatomopathologie , Encéphalocèle/anatomopathologie , Stabilité enzymatique , Ciblage de gène , Cellules HEK293 , Humains , Souris , Mitose , Phénotype , Polykystoses rénales/anatomopathologie , Liaison aux protéines , Rétinite pigmentaire/anatomopathologie , Récepteur Smoothened/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE