Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 41
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Compr Physiol ; 14(2): 1-41, 2024 Mar 29.
Article de Anglais | MEDLINE | ID: mdl-39109974

RÉSUMÉ

The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.


Sujet(s)
Canaux sodium épithéliaux , Humains , Canaux sodium épithéliaux/métabolisme , Canaux sodium épithéliaux/physiologie , Animaux
2.
Mol Biol Cell ; 35(9): ar119, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-39024255

RÉSUMÉ

Hypertension affects one billion people worldwide and is the most common risk factor for cardiovascular disease, yet a comprehensive picture of its underlying genetic factors is incomplete. Amongst regulators of blood pressure is the renal outer medullary potassium (ROMK) channel. While select ROMK mutants are prone to premature degradation and lead to disease, heterozygous carriers of some of these same alleles are protected from hypertension. Therefore, we hypothesized that gain-of-function (GoF) ROMK variants which increase potassium flux may predispose people to hypertension. To begin to test this hypothesis, we employed genetic screens and a candidate-based approach to identify six GoF variants in yeast. Subsequent functional assays in higher cells revealed two variant classes. The first group exhibited greater stability in the endoplasmic reticulum, enhanced channel assembly, and/or increased protein at the cell surface. The second group of variants resided in the PIP2-binding pocket, and computational modeling coupled with patch-clamp studies demonstrated lower free energy for channel opening and slowed current rundown, consistent with an acquired PIP2-activated state. Together, these findings advance our understanding of ROMK structure-function, suggest the existence of hyperactive ROMK alleles in humans, and establish a system to facilitate the development of ROMK-targeted antihypertensives.


Sujet(s)
Canaux potassiques rectifiants entrants , Humains , Canaux potassiques rectifiants entrants/métabolisme , Canaux potassiques rectifiants entrants/génétique , Mutation gain de fonction , Potassium/métabolisme , Hypertension artérielle/génétique , Hypertension artérielle/métabolisme , Rein/métabolisme , Mutation/génétique , Cellules HEK293 , Réticulum endoplasmique/métabolisme , Transport des ions , Allèles
3.
Am J Physiol Renal Physiol ; 326(6): F1066-F1077, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38634134

RÉSUMÉ

The epithelial Na+ channel (ENaC) γ subunit is essential for homeostasis of Na+, K+, and body fluid. Dual γ subunit cleavage before and after a short inhibitory tract allows dissociation of this tract, increasing channel open probability (PO), in vitro. Cleavage proximal to the tract occurs at a furin recognition sequence (143RKRR146, in the mouse γ subunit). Loss of furin-mediated cleavage prevents in vitro activation of the channel by proteolysis at distal sites. We hypothesized that 143RKRR146 mutation to 143QQQQ146 (γQ4) in 129/Sv mice would reduce ENaC PO, impair flow-stimulated flux of Na+ (JNa) and K+ (JK) in perfused collecting ducts, reduce colonic amiloride-sensitive short-circuit current (ISC), and impair Na+, K+, and body fluid homeostasis. Immunoblot of γQ4/Q4 mouse kidney lysates confirmed loss of a band consistent in size with the furin-cleaved proteolytic fragment. However, γQ4/Q4 male mice on a low Na+ diet did not exhibit altered ENaC PO or flow-induced JNa, though flow-induced JK modestly decreased. Colonic amiloride-sensitive ISC in γQ4/Q4 mice was not altered. γQ4/Q4 males, but not females, exhibited mildly impaired fluid volume conservation when challenged with a low Na+ diet. Blood Na+ and K+ were unchanged on a regular, low Na+, or high K+ diet. These findings suggest that biochemical evidence of γ subunit cleavage should not be used in isolation to evaluate ENaC activity. Furthermore, factors independent of γ subunit cleavage modulate channel PO and the influence of ENaC on Na+, K+, and fluid volume homeostasis in 129/Sv mice, in vivo.NEW & NOTEWORTHY The epithelial Na+ channel (ENaC) is activated in vitro by post-translational proteolysis. In vivo, low Na+ or high K+ diets enhance ENaC proteolysis, and proteolysis is hypothesized to contribute to channel activation in these settings. Using a mouse expressing ENaC with disruption of a key proteolytic cleavage site, this study demonstrates that impaired proteolytic activation of ENaC's γ subunit has little impact upon channel open probability or the ability of mice to adapt to low Na+ or high K+ diets.


Sujet(s)
Canaux sodium épithéliaux , Protéolyse , Sodium , Animaux , Canaux sodium épithéliaux/métabolisme , Canaux sodium épithéliaux/génétique , Mâle , Femelle , Sodium/métabolisme , Tubules collecteurs rénaux/métabolisme , Homéostasie , Furine/métabolisme , Furine/génétique , Souris , Côlon/métabolisme , Potassium/métabolisme , Régime pauvre en sel , Souris de souche-129 , Mutation , Amiloride/pharmacologie
4.
bioRxiv ; 2024 Feb 14.
Article de Anglais | MEDLINE | ID: mdl-38405735

RÉSUMÉ

The ENaC gamma subunit is essential for homeostasis of Na + , K + , and body fluid. Dual subunit cleavage before and after a short inhibitory tract allows dissociation of this tract, increasing channel open probability (P O ), in vitro . Cleavage proximal to the tract occurs at a furin recognition sequence ( 143 RKRR 146 in mouse). Loss of furin-mediated cleavage prevents in vitro activation of the channel by proteolysis at distal sites. We hypothesized that 143 RKRR 146 mutation to 143 QQQQ 146 ( Q4 ) in 129/Sv mice would reduce ENaC P O , impair flow-stimulated flux of Na + (J Na ) and K + (J K ) in perfused collecting ducts, reduce colonic amiloride-sensitive short circuit current (I SC ), and impair Na + , K + , and body fluid homeostasis. Immunoblot of Q4/Q4 mouse kidney lysates confirmed loss of a band consistent in size with the furin-cleaved proteolytic fragment. However, Q4/Q4 male mice on a low Na + diet did not exhibit altered ENaC P O or flow-induced J Na , though flow-induced J K modestly decreased. Colonic amiloride-sensitive I SC in Q4/Q4 mice was not altered. Q4/Q4 males, but not females, exhibited mildly impaired fluid volume conservation when challenged with a low Na + diet. Blood Na + and K + were unchanged on a regular, low Na + , or high K + diet. These findings suggest that biochemical evidence of gamma subunit cleavage should not be used in isolation to evaluate ENaC activity. Further, factors independent of gamma subunit cleavage modulate channel P O and the influence of ENaC on Na + , K + , and fluid volume homeostasis in 129/Sv mice, in vivo .

5.
PLoS Genet ; 19(11): e1011051, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37956218

RÉSUMÉ

Bartter syndrome is a group of rare genetic disorders that compromise kidney function by impairing electrolyte reabsorption. Left untreated, the resulting hyponatremia, hypokalemia, and dehydration can be fatal, and there is currently no cure. Bartter syndrome type II specifically arises from mutations in KCNJ1, which encodes the renal outer medullary potassium channel, ROMK. Over 40 Bartter syndrome-associated mutations in KCNJ1 have been identified, yet their molecular defects are mostly uncharacterized. Nevertheless, a subset of disease-linked mutations compromise ROMK folding in the endoplasmic reticulum (ER), which in turn results in premature degradation via the ER associated degradation (ERAD) pathway. To identify uncharacterized human variants that might similarly lead to premature degradation and thus disease, we mined three genomic databases. First, phenotypic data in the UK Biobank were analyzed using a recently developed computational platform to identify individuals carrying KCNJ1 variants with clinical features consistent with Bartter syndrome type II. In parallel, we examined genomic data in both the NIH TOPMed and ClinVar databases with the aid of Rhapsody, a verified computational algorithm that predicts mutation pathogenicity and disease severity. Subsequent phenotypic studies using a yeast screen to assess ROMK function-and analyses of ROMK biogenesis in yeast and human cells-identified four previously uncharacterized mutations. Among these, one mutation uncovered from the two parallel approaches (G228E) destabilized ROMK and targeted it for ERAD, resulting in reduced cell surface expression. Another mutation (T300R) was ERAD-resistant, but defects in channel activity were apparent based on two-electrode voltage clamp measurements in X. laevis oocytes. Together, our results outline a new computational and experimental pipeline that can be applied to identify disease-associated alleles linked to a range of other potassium channels, and further our understanding of the ROMK structure-function relationship that may aid future therapeutic strategies to advance precision medicine.


Sujet(s)
Syndrome de Bartter , Biologie informatique , Humains , Syndrome de Bartter/génétique , Syndrome de Bartter/métabolisme , Dégradation associée au réticulum endoplasmique , Mutation , Canaux potassiques rectifiants entrants/génétique , Canaux potassiques rectifiants entrants/métabolisme , Saccharomyces cerevisiae/métabolisme , Biologie informatique/méthodes , Bases de données génétiques
6.
JCI Insight ; 8(21)2023 Nov 08.
Article de Anglais | MEDLINE | ID: mdl-37707951

RÉSUMÉ

Epithelial Na+ channels (ENaCs) control extracellular fluid volume by facilitating Na+ absorption across transporting epithelia. In vitro studies showed that Cys-palmitoylation of the γENaC subunit is a major regulator of channel activity. We tested whether γ subunit palmitoylation sites are necessary for channel function in vivo by generating mice lacking the palmitoylated cysteines (γC33A,C41A) using CRISPR/Cas9 technology. ENaCs in dissected kidney tubules from γC33A,C41A mice had reduced open probability compared with wild-type (WT) littermates maintained on either standard or Na+-deficient diets. Male mutant mice also had higher aldosterone levels than WT littermates following Na+ restriction. However, γC33A,C41A mice did not have reduced amiloride-sensitive Na+ currents in the distal colon or benzamil-induced natriuresis compared to WT mice. We identified a second, larger conductance cation channel in the distal nephron with biophysical properties distinct from ENaC. The activity of this channel was higher in Na+-restricted γC33A,C41A versus WT mice and was blocked by benzamil, providing a possible compensatory mechanism for reduced prototypic ENaC function. We conclude that γ subunit palmitoylation sites are required for prototypic ENaC activity in vivo but are not necessary for amiloride/benzamil-sensitive Na+ transport in the distal nephron or colon.


Sujet(s)
Amiloride , Lipoylation , Souris , Mâle , Animaux , Amiloride/pharmacologie , Canaux sodium épithéliaux/génétique , Canaux sodium épithéliaux/métabolisme , Sodium/métabolisme
7.
bioRxiv ; 2023 May 08.
Article de Anglais | MEDLINE | ID: mdl-37214976

RÉSUMÉ

Bartter syndrome is a group of rare genetic disorders that compromise kidney function by impairing electrolyte reabsorption. Left untreated, the resulting hyponatremia, hypokalemia, and dehydration can be fatal. Although there is no cure for this disease, specific genes that lead to different Bartter syndrome subtypes have been identified. Bartter syndrome type II specifically arises from mutations in the KCNJ1 gene, which encodes the renal outer medullary potassium channel, ROMK. To date, over 40 Bartter syndrome-associated mutations in KCNJ1 have been identified. Yet, their molecular defects are mostly uncharacterized. Nevertheless, a subset of disease-linked mutations compromise ROMK folding in the endoplasmic reticulum (ER), which in turn results in premature degradation via the ER associated degradation (ERAD) pathway. To identify uncharacterized human variants that might similarly lead to premature degradation and thus disease, we mined three genomic databases. First, phenotypic data in the UK Biobank were analyzed using a recently developed computational platform to identify individuals carrying KCNJ1 variants with clinical features consistent with Bartter syndrome type II. In parallel, we examined ROMK genomic data in both the NIH TOPMed and ClinVar databases with the aid of a computational algorithm that predicts protein misfolding and disease severity. Subsequent phenotypic studies using a high throughput yeast screen to assess ROMK function-and analyses of ROMK biogenesis in yeast and human cells-identified four previously uncharacterized mutations. Among these, one mutation uncovered from the two parallel approaches (G228E) destabilized ROMK and targeted it for ERAD, resulting in reduced protein expression at the cell surface. Another ERAD-targeted ROMK mutant (L320P) was found in only one of the screens. In contrast, another mutation (T300R) was ERAD-resistant, but defects in ROMK activity were apparent after expression and two-electrode voltage clamp measurements in Xenopus oocytes. Together, our results outline a new computational and experimental pipeline that can be applied to identify disease-associated alleles linked to a range of other potassium channels, and further our understanding of the ROMK structure-function relationship that may aid future therapeutic strategies. Author Summary: Bartter syndrome is a rare genetic disorder characterized by defective renal electrolyte handing, leading to debilitating symptoms and, in some patients, death in infancy. Currently, there is no cure for this disease. Bartter syndrome is divided into five types based on the causative gene. Bartter syndrome type II results from genetic variants in the gene encoding the ROMK protein, which is expressed in the kidney and assists in regulating sodium, potassium, and water homeostasis. Prior work established that some disease-associated ROMK mutants misfold and are destroyed soon after their synthesis in the endoplasmic reticulum (ER). Because a growing number of drugs have been identified that correct defective protein folding, we wished to identify an expanded cohort of similarly misshapen and unstable disease-associated ROMK variants. To this end, we developed a pipeline that employs computational analyses of human genome databases with genetic and biochemical assays. Next, we both confirmed the identity of known variants and uncovered previously uncharacterized ROMK variants associated with Bartter syndrome type II. Further analyses indicated that select mutants are targeted for ER-associated degradation, while another mutant compromises ROMK function. This work sets-the-stage for continued mining for ROMK loss of function alleles as well as other potassium channels, and positions select Bartter syndrome mutations for correction using emerging pharmaceuticals.

8.
J Biol Chem ; 299(3): 102914, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36649907

RÉSUMÉ

Epithelial Na+ channels (ENaCs) and related channels have large extracellular domains where specific factors interact and induce conformational changes, leading to altered channel activity. However, extracellular structural transitions associated with changes in ENaC activity are not well defined. Using crosslinking and two-electrode voltage clamp in Xenopus oocytes, we identified several pairs of functional intersubunit contacts where mouse ENaC activity was modulated by inducing or breaking a disulfide bond between introduced Cys residues. Specifically, crosslinking E499C in the ß-subunit palm domain and N510C in the α-subunit palm domain activated ENaC, whereas crosslinking ßE499C with αQ441C in the α-subunit thumb domain inhibited ENaC. We determined that bridging ßE499C to αN510C or αQ441C altered the Na+ self-inhibition response via distinct mechanisms. Similar to bridging ßE499C and αQ441C, we found that crosslinking palm domain αE557C with thumb domain γQ398C strongly inhibited ENaC activity. In conclusion, we propose that certain residues at specific subunit interfaces form microswitches that convey a conformational wave during ENaC gating and its regulation.


Sujet(s)
Canaux sodium épithéliaux , Ovocytes , Animaux , Souris , Canaux sodium épithéliaux/métabolisme , Ions , Conformation moléculaire , Ovocytes/métabolisme , Domaines protéiques , Xenopus
9.
Hypertension ; 79(11): 2573-2582, 2022 11.
Article de Anglais | MEDLINE | ID: mdl-36193739

RÉSUMÉ

BACKGROUND: The epithelial Na+ channel (ENaC) is intrinsically linked to fluid volume homeostasis and blood pressure. Specific rare mutations in SCNN1A, SCNN1B, and SCNN1G, genes encoding the α, ß, and γ subunits of ENaC, respectively, are associated with extreme blood pressure phenotypes. No associations between blood pressure and SCNN1D, which encodes the δ subunit of ENaC, have been reported. A small number of sequence variants in ENaC subunits have been reported to affect functional transport in vitro or blood pressure. The effects of the vast majority of rare and low-frequency ENaC variants on blood pressure are not known. METHODS: We explored the association of low frequency and rare variants in the genes encoding ENaC subunits, with systolic blood pressure, diastolic blood pressure, mean arterial pressure, and pulse pressure. Using whole-genome sequencing data from 14 studies participating in the Trans-Omics in Precision Medicine Whole-Genome Sequencing Program, and sequence kernel association tests. RESULTS: We found that variants in SCNN1A and SCNN1B were associated with diastolic blood pressure and mean arterial pressure (P<0.00625). Although SCNN1D is poorly expressed in human kidney tissue, SCNN1D variants were associated with systolic blood pressure, diastolic blood pressure, mean arterial pressure, and pulse pressure (P<0.00625). ENaC variants in 2 of the 4 subunits (SCNN1B and SCNN1D) were also associated with estimated glomerular filtration rate (P<0.00625), but not with stroke. CONCLUSIONS: Our results suggest that variants in extrarenal ENaCs, in addition to ENaCs expressed in kidneys, influence blood pressure and kidney function.


Sujet(s)
Canaux sodium épithéliaux , Sodium , Humains , Pression sanguine/génétique , Canaux sodium épithéliaux/génétique , Phénotype , Rein
10.
Am J Physiol Renal Physiol ; 323(4): F479-F491, 2022 10 01.
Article de Anglais | MEDLINE | ID: mdl-35979965

RÉSUMÉ

Kidney organoids derived from human or rodent pluripotent stem cells have glomerular structures and differentiated/polarized nephron segments. Although there is an increasing understanding of the patterns of expression of transcripts and proteins within kidney organoids, there is a paucity of data regarding functional protein expression, in particular on transporters that mediate the vectorial transport of solutes. Using cells derived from kidney organoids, we examined the functional expression of key ion channels that are expressed in distal nephron segments: the large-conductance Ca2+-activated K+ (BKCa) channel, the renal outer medullary K+ (ROMK, Kir1.1) channel, and the epithelial Na+ channel (ENaC). RNA-sequencing analyses showed that genes encoding the pore-forming subunits of these transporters, and for BKCa channels, key accessory subunits, are expressed in kidney organoids. Expression and localization of selected ion channels was confirmed by immunofluorescence microscopy and immunoblot analysis. Electrophysiological analysis showed that BKCa and ROMK channels are expressed in different cell populations. These two cell populations also expressed other unidentified Ba2+-sensitive K+ channels. BKCa expression was confirmed at a single channel level, based on its high conductance and voltage dependence of activation. We also found a population of cells expressing amiloride-sensitive ENaC currents. In summary, our results show that human kidney organoids functionally produce key distal nephron K+ and Na+ channels.NEW & NOTEWORTHY Our results show that human kidney organoids express key K+ and Na+ channels that are expressed on the apical membranes of cells in the aldosterone-sensitive distal nephron, including the large-conductance Ca2+-activated K+ channel, renal outer medullary K+ channel, and epithelial Na+ channel.


Sujet(s)
Cellules souches pluripotentes induites , Canaux potassiques rectifiants entrants , Aldostérone/métabolisme , Amiloride/pharmacologie , Canaux sodium épithéliaux/génétique , Canaux sodium épithéliaux/métabolisme , Humains , Cellules souches pluripotentes induites/métabolisme , Rein/métabolisme , Organoïdes/métabolisme , Canaux potassiques rectifiants entrants/génétique , Canaux potassiques rectifiants entrants/métabolisme , ARN/métabolisme , Sodium/métabolisme
11.
J Biol Chem ; 298(5): 101860, 2022 05.
Article de Anglais | MEDLINE | ID: mdl-35339489

RÉSUMÉ

The epithelial Na+ channel (ENaC)/degenerin family has a similar extracellular architecture, where specific regulatory factors interact and alter channel gating behavior. The extracellular palm domain serves as a key link to the channel pore. In this study, we used cysteine-scanning mutagenesis to assess the functional effects of Cys-modifying reagents on palm domain ß10 strand residues in mouse ENaC. Of the 13 ENaC α subunit mutants with Cys substitutions examined, only mutants at sites in the proximal region of ß10 exhibited changes in channel activity in response to methanethiosulfonate reagents. Additionally, Cys substitutions at three proximal sites of ß and γ subunit ß10 strands also rendered mutant channels methanethiosulfonate-responsive. Moreover, multiple Cys mutants were activated by low concentrations of thiophilic Cd2+. Using the Na+ self-inhibition response to assess ENaC gating behavior, we identified four α, two ß, and two γ subunit ß10 strand mutations that changed the Na+ self-inhibition response. Our results suggest that the proximal regions of ß10 strands in all three subunits are accessible to small aqueous compounds and Cd2+ and have a role in modulating ENaC gating. These results are consistent with a structural model of mouse ENaC that predicts the presence of aqueous tunnels adjacent to the proximal part of ß10 and with previously resolved structures of a related family member where palm domain structural transitions were observed with channels in an open or closed state.


Sujet(s)
Cadmium , Canaux sodium épithéliaux , Animaux , Cystéine , Canaux sodium épithéliaux/composition chimique , Canaux sodium épithéliaux/génétique , Ions , Souris , Conformation des protéines , Sodium/métabolisme
12.
Am J Physiol Renal Physiol ; 321(6): F705-F714, 2021 12 01.
Article de Anglais | MEDLINE | ID: mdl-34632813

RÉSUMÉ

The epithelial Na+ channel (ENaC) promotes the absorption of Na+ in the aldosterone-sensitive distal nephron, colon, and respiratory epithelia. Deletion of genes encoding subunits of ENaC results in early postnatal mortality. Here, we present the initial characterization of a mouse with dramatically suppressed expression of the ENaC γ-subunit. We used this hypomorphic (γmt) allele to explore the importance of this subunit in homeostasis of electrolytes and body fluid volume. At baseline, γ-subunit expression in γmt/mt mice was markedly suppressed in the kidney and lung, whereas electrolytes resembled those of littermate controls. Aldosterone levels in γmt/mt mice exceeded those seen in littermate controls. Quantitative magnetic resonance measurement of body composition revealed similar baseline body water, lean tissue mass, and fat tissue mass in γmt/mt mice and controls. γmt/mt mice exhibited a more rapid decline in body water and lean tissue mass in response to a low-Na+ diet than the controls. Replacement of drinking water with 2% saline selectively and transiently increased body water and lean tissue mass in γmt/mt mice relative to the controls. Lower blood pressures were variably observed in γmt/mt mice on a high-salt diet compared with the controls. γmt/mt also exhibited reduced diurnal blood pressure variation, a "nondipping" phenotype, on a high-Na+ diet. Although ENaC in the renal tubules and colon works to prevent extracellular fluid volume depletion, our observations suggest that ENaC in other tissues may participate in regulating extracellular fluid volume and blood pressure.NEW & NOTEWORTHY A mouse with globally suppressed expression of the epithelial Na+ channel γ-subunit showed enhanced sensitivity to dietary salt, including a transient increase in total body fluid, reduced blood pressure, and reduced diurnal blood pressure variation when given a dietary NaCl challenge. These results point to a role for the epithelial Na+ channel in regulating body fluid and blood pressure beyond classical transepithelial Na+ transport mechanisms.


Sujet(s)
Pression sanguine , Volume sanguin , Régime pauvre en sel , Canaux sodium épithéliaux/déficit , Rein/métabolisme , Poumon/métabolisme , Chlorure de sodium alimentaire/métabolisme , Équilibre hydroélectrolytique , Animaux , Marqueurs biologiques/sang , Marqueurs biologiques/urine , Composition corporelle , Canaux sodium épithéliaux/génétique , Femelle , Mâle , Souris knockout , État d'hydratation de l'organisme , Chlorure de sodium alimentaire/administration et posologie , Chlorure de sodium alimentaire/toxicité
13.
JCI Insight ; 5(8)2020 04 07.
Article de Anglais | MEDLINE | ID: mdl-32255763

RÉSUMÉ

BK channels are expressed in intercalated cells (ICs) and principal cells (PCs) in the cortical collecting duct (CCD) of the mammalian kidney and have been proposed to be responsible for flow-induced K+ secretion (FIKS) and K+ adaptation. To examine the IC-specific role of BK channels, we generated a mouse with targeted disruption of the pore-forming BK α subunit (BKα) in ICs (IC-BKα-KO). Whole cell charybdotoxin-sensitive (ChTX-sensitive) K+ currents were readily detected in control ICs but largely absent in ICs of IC-BKα-KO mice. When placed on a high K+ (HK) diet for 13 days, blood [K+] was significantly greater in IC-BKα-KO mice versus controls in males only, although urinary K+ excretion rates following isotonic volume expansion were similar in males and females. FIKS was present in microperfused CCDs isolated from controls but was absent in IC-BKα-KO CCDs of both sexes. Also, flow-stimulated epithelial Na+ channel-mediated (ENaC-mediated) Na+ absorption was greater in CCDs from female IC-BKα-KO mice than in CCDs from males. Our results confirm a critical role of IC BK channels in FIKS. Sex contributes to the capacity for adaptation to a HK diet in IC-BKα-KO mice.


Sujet(s)
Tubules collecteurs rénaux/métabolisme , Sous-unités alpha des canaux potassiques calcium-dépendants de grande conductance/métabolisme , Potassium/métabolisme , Animaux , Lignée cellulaire , Charybdotoxine/pharmacologie , Transport des ions/effets des médicaments et des substances chimiques , Transport des ions/génétique , Sous-unités alpha des canaux potassiques calcium-dépendants de grande conductance/antagonistes et inhibiteurs , Sous-unités alpha des canaux potassiques calcium-dépendants de grande conductance/génétique , Souris , Souris knockout
14.
J Biol Chem ; 294(45): 16765-16775, 2019 11 08.
Article de Anglais | MEDLINE | ID: mdl-31551351

RÉSUMÉ

Epithelial Na+ channel (ENaC)-mediated Na+ transport has a key role in the regulation of extracellular fluid volume, blood pressure, and extracellular [K+]. Among the thousands of human ENaC variants, only a few exist whose functional consequences have been experimentally tested. Here, we used the Xenopus oocyte expression system to investigate the functional roles of four nonsynonymous human ENaC variants located within the ß7-strand and its adjacent loop of the α-subunit extracellular ß-ball domain. αR350Wßγ and αG355Rßγ channels exhibited 2.5- and 1.8-fold greater amiloride-sensitive currents than WT αßγ human ENaCs, respectively, whereas αV351Aßγ channels conducted significantly less current than WT. Currents in αH354Rßγ-expressing oocytes were similar to those expressing WT. Surface expression levels of three mutants (αR350Wßγ, αV351Aßγ, and αG355Rßγ) were similar to that of WT. However, three mutant channels (αR350Wßγ, αH354Rßγ, and αG355Rßγ) exhibited a reduced Na+ self-inhibition response. Open probability of αR350Wßγ was significantly greater than that of WT. Moreover, other Arg-350 variants, including αR350G, αR350L, and αR350Q, also had significantly increased channel activity. A direct comparison of αR350W and two previously reported gain-of-function variants revealed that αR350W increases ENaC activity similarly to αW493R, but to a much greater degree than does αC479R. Our results indicate that αR350W along with αR350G, αR350L, and αR350Q, and αG355R are novel gain-of-function variants that function as gating modifiers. The location of these multiple functional variants suggests that the αENaC ß-ball domain portion that interfaces with the palm domain of ßENaC critically regulates ENaC gating.


Sujet(s)
Canaux sodium épithéliaux/génétique , Canaux sodium épithéliaux/métabolisme , Espace extracellulaire/métabolisme , Ouverture et fermeture des portes des canaux ioniques/génétique , Canaux sodium épithéliaux/composition chimique , Régulation de l'expression des gènes , Humains , Modèles moléculaires , Domaines protéiques
15.
J Biol Chem ; 293(45): 17582-17592, 2018 11 09.
Article de Anglais | MEDLINE | ID: mdl-30228189

RÉSUMÉ

The epithelial Na+ channel (ENaC) possesses a large extracellular domain formed by a ß-strand core enclosed by three peripheral α-helical subdomains, which have been dubbed thumb, finger, and knuckle. Here we asked whether the ENaC thumb domains play specific roles in channel function. To this end, we examined the characteristics of channels lacking a thumb domain in an individual ENaC subunit (α, ß, or γ). Removing the γ subunit thumb domain had no effect on Na+ currents when expressed in Xenopus oocytes, but moderately reduced channel surface expression. In contrast, ENaCs lacking the α or ß subunit thumb domain exhibited significantly reduced Na+ currents along with a large reduction in channel surface expression. Moreover, channels lacking an α or γ thumb domain exhibited a diminished Na+ self-inhibition response, whereas this response was retained in channels lacking a ß thumb domain. In turn, deletion of the α thumb domain had no effect on the degradation rate of the immature α subunit as assessed by cycloheximide chase analysis. However, accelerated degradation of the immature ß subunit and mature γ subunit was observed when the ß or γ thumb domain was deleted, respectively. Our results suggest that the thumb domains in each ENaC subunit are required for optimal surface expression in oocytes and that the α and γ thumb domains both have important roles in the channel's inhibitory response to external Na+ Our findings support the notion that the extracellular helical domains serve as functional modules that regulate ENaC biogenesis and activity.


Sujet(s)
Canaux sodium épithéliaux/métabolisme , Sous-unités de protéines/métabolisme , Protéolyse , Animaux , Canaux sodium épithéliaux/composition chimique , Canaux sodium épithéliaux/génétique , Expression des gènes , Humains , Ovocytes/métabolisme , Domaines protéiques , Sous-unités de protéines/composition chimique , Sous-unités de protéines/génétique , Xenopus laevis
16.
Am J Respir Cell Mol Biol ; 57(6): 711-720, 2017 12.
Article de Anglais | MEDLINE | ID: mdl-28708422

RÉSUMÉ

Cystic fibrosis (CF) remains the most lethal genetic disease in the Caucasian population. However, there is great variability in clinical phenotypes and survival times, even among patients harboring the same genotype. We identified five patients with CF and a homozygous F508del mutation in the CFTR gene who were in their fifth or sixth decade of life and had shown minimal changes in lung function over a longitudinal period of more than 20 years. Because of the rarity of this long-term nonprogressive phenotype, we hypothesized these individuals may carry rare genetic variants in modifier genes that ameliorate disease severity. Individuals at the extremes of survival time and lung-function trajectory underwent whole-exome sequencing, and the sequencing data were filtered to include rare missense, stopgain, indel, and splicing variants present with a mean allele frequency of <0.2% in general population databases. Epithelial sodium channel (ENaC) mutants were generated via site-directed mutagenesis and expressed for Xenopus oocyte assays. Four of the five individuals carried extremely rare or never reported variants in the SCNN1D and SCNN1B genes of the ENaC. Separately, an independently enriched rare variant in SCNN1D was identified in the Exome Variant Server database associated with a milder pulmonary disease phenotype. Functional analysis using Xenopus oocytes revealed that two of the three variants in δ-ENaC encoded by SCNN1D exhibited hypomorphic channel activity. Our data suggest a potential role for δ-ENaC in controlling sodium reabsorption in the airways, and advance the plausibility of ENaC as a therapeutic target in CF.


Sujet(s)
Séquence d'acides aminés , Protéine CFTR/métabolisme , Mucoviscidose/métabolisme , Canaux sodium épithéliaux/métabolisme , Délétion de séquence , Animaux , Mucoviscidose/génétique , Protéine CFTR/génétique , Canaux sodium épithéliaux/génétique , Femelle , Humains , Mâle , Xenopus , Xenopus laevis
17.
Am J Physiol Renal Physiol ; 311(5): F908-F914, 2016 11 01.
Article de Anglais | MEDLINE | ID: mdl-27582106

RÉSUMÉ

Mutations in genes encoding subunits of the epithelial Na+ channel (ENaC) can cause early onset familial hypertension, demonstrating the importance of this channel in modulating blood pressure. It remains unclear whether other genetic variants resulting in subtler alterations of channel function result in hypertension or altered sensitivity of blood pressure to dietary salt. This study sought to identify functional human ENaC variants to examine how these variants alter channel activity and to explore whether these variants are associated with altered sensitivity of blood pressure to dietary salt. Six-hundred participants of the Genetic Epidemiology Network of Salt Sensitivity (GenSalt) study with salt-sensitive or salt-resistant blood pressure underwent sequencing of the genes encoding ENaC subunits. Functional effects of identified variants were examined in a Xenopus oocyte expression system. Variants that increased channel activity included three in the gene encoding the α-subunit (αS115N, αR476W, and αV481M), one in the ß-subunit (ßS635N), and one in the γ-subunit (γL438Q). One α-subunit variant (αA334T) and one γ-subunit variant (ßD31N) decreased channel activity. Several α-subunit extracellular domain variants altered channel inhibition by extracellular Na+ (Na+ self-inhibition). One variant (αA334T) decreased and one (αV481M) increased cell surface expression. Association between these variants and salt sensitivity did not reach statistical significance. This study identifies novel functional human ENaC variants and demonstrates that some variants alter channel cell surface expression and/or Na+ self-inhibition.


Sujet(s)
Pression sanguine/effets des médicaments et des substances chimiques , Pression sanguine/génétique , Canaux sodium épithéliaux/génétique , Hypertension artérielle/génétique , Mutation faux-sens , Sodium alimentaire/pharmacologie , Allèles , Animaux , Fréquence d'allèle , Variation génétique , Humains , Ovocytes/métabolisme , Xenopus laevis
18.
J Biol Chem ; 290(41): 25140-50, 2015 Oct 09.
Article de Anglais | MEDLINE | ID: mdl-26306034

RÉSUMÉ

The extracellular regions of epithelial Na(+) channel subunits are highly ordered structures composed of domains formed by α helices and ß strands. Deletion of the peripheral knuckle domain of the α subunit in the αßγ trimer results in channel activation, reflecting an increase in channel open probability due to a loss of the inhibitory effect of external Na(+) (Na(+) self-inhibition). In contrast, deletion of either the ß or γ subunit knuckle domain within the αßγ trimer dramatically reduces epithelial Na(+) channel function and surface expression, and impairs subunit maturation. We systematically mutated individual α subunit knuckle domain residues and assessed functional properties of these mutants. Cysteine substitutions at 14 of 28 residues significantly suppressed Na(+) self-inhibition. The side chains of a cluster of these residues are non-polar and are predicted to be directed toward the palm domain, whereas a group of polar residues are predicted to orient their side chains toward the space between the knuckle and finger domains. Among the mutants causing the greatest suppression of Na(+) self-inhibition were αP521C, αI529C, and αS534C. The introduction of Cys residues at homologous sites within either the ß or γ subunit knuckle domain resulted in little or no change in Na(+) self-inhibition. Our results suggest that multiple residues in the α subunit knuckle domain contribute to the mechanism of Na(+) self-inhibition by interacting with palm and finger domain residues via two separate and chemically distinct motifs.


Sujet(s)
Canaux sodium épithéliaux/composition chimique , Canaux sodium épithéliaux/métabolisme , Interactions hydrophobes et hydrophiles , Séquence d'acides aminés , Animaux , Lignée cellulaire , Humains , Souris , Modèles moléculaires , Données de séquences moléculaires , Mutation , Structure tertiaire des protéines , Rats , Sodium/pharmacologie
19.
Nat Rev Nephrol ; 10(3): 146-57, 2014 Mar.
Article de Anglais | MEDLINE | ID: mdl-24419567

RÉSUMÉ

Sodium transport in the distal nephron is mediated by epithelial sodium channel activity. Proteolytic processing of external domains and inhibition with increased sodium concentrations are important regulatory features of epithelial sodium channel complexes expressed in the distal nephron. By contrast, sodium channels expressed in the vascular system are activated by increased external sodium concentrations, which results in changes in the mechanical properties and function of endothelial cells. Mechanosensitivity and shear stress affect both epithelial and vascular sodium channel activity. Guyton's hypothesis stated that blood pressure control is critically dependent on vascular tone and fluid handling by the kidney. The synergistic effects, and complementary regulation, of the epithelial and vascular systems are consistent with the Guytonian model of volume and blood pressure regulation, and probably reflect sequential evolution of the two systems. The integration of vascular tone, renal perfusion and regulation of renal sodium reabsorption is the central underpinning of the Guytonian model. In this Review, we focus on the expression and regulation of sodium channels, and we outline the emerging evidence that describes the central role of amiloride-sensitive sodium channels in the efferent (vascular) and afferent (epithelial) arms of this homeostatic system.


Sujet(s)
Amiloride/pharmacologie , Pression sanguine/effets des médicaments et des substances chimiques , Endothélium vasculaire/métabolisme , Canaux sodium épithéliaux/effets des médicaments et des substances chimiques , Néphrons/métabolisme , Transport biologique , Endothélium vasculaire/effets des médicaments et des substances chimiques , Bloqueurs de canaux sodiques épithéliaux/pharmacologie , Canaux sodium épithéliaux/métabolisme , Humains
20.
Am J Physiol Renal Physiol ; 306(5): F561-7, 2014 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-24402098

RÉSUMÉ

Epithelial Na(+) channel (ENaC) subunits (α, ß, and γ) found in functional complexes are translated from mature mRNAs that are similarly processed by the inclusion of 13 canonical exons. We examined whether individual exons 3-12, encoding the large extracellular domain, are required for functional channel expression. Human ENaCs with an in-frame deletion of a single α-subunit exon were expressed in Xenopus oocytes, and their functional properties were examined by two-electrode voltage clamp. With the exception of exon 11, deletion of an individual exon eliminated channel activity. Channels lacking α-subunit exon 11 were hyperactive. Oocytes expressing this mutant exhibited fourfold greater amiloride-sensitive whole cell currents than cells expressing wild-type channels. A parallel fivefold increase in channel open probability was observed with channels lacking α-subunit exon 11. These mutant channels also exhibited a lost of Na(+) self-inhibition, whereas we found similar levels of surface expression of mutant and wild-type channels. In contrast, in-frame deletions of exon 11 from either the ß- or γ-subunit led to a significant loss of channel activity, in association with a marked decrease in surface expression. Our results suggest that exon 11 within the three human ENaC genes encodes structurally homologous yet functionally diverse domains and that exon 11 in the α-subunit encodes a module that regulates channel gating.


Sujet(s)
Canaux sodium épithéliaux/génétique , Délétion de séquence , Xenopus laevis/métabolisme , Amiloride/pharmacologie , Animaux , Cellules cultivées , Canaux sodium épithéliaux/métabolisme , Exons , Humains , Ovocytes/métabolisme , Techniques de patch-clamp/méthodes , Mutation ponctuelle/génétique , Sous-unités de protéines/génétique , Sous-unités de protéines/métabolisme , Délétion de séquence/effets des médicaments et des substances chimiques , Xenopus laevis/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE