Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Gamme d'année
1.
Blood Adv ; 5(1): 185-197, 2021 01 12.
Article de Anglais | MEDLINE | ID: mdl-33570628

RÉSUMÉ

Inhibition of the B-cell receptor (BCR) signaling pathway is highly effective in B-cell neoplasia through Bruton tyrosine kinase inhibition by ibrutinib. Ibrutinib also disrupts cell adhesion between a tumor and its microenvironment. However, it is largely unknown how BCR signaling is linked to cell adhesion. We observed that intrinsic sensitivities of mantle cell lymphoma (MCL) cell lines to ibrutinib correlated well with their cell adhesion phenotype. RNA-sequencing revealed that BCR and cell adhesion signatures were simultaneously downregulated by ibrutinib in the ibrutinib-sensitive, but not ibrutinib-resistant, cells. Among the differentially expressed genes, RAC2, part of the BCR signature and a known regulator of cell adhesion, was downregulated at both the RNA and protein levels by ibrutinib only in sensitive cells. RAC2 physically associated with B-cell linker protein (BLNK), a BCR adaptor molecule, uniquely in sensitive cells. RAC2 reduction using RNA interference and CRISPR impaired cell adhesion, whereas RAC2 overexpression reversed ibrutinib-induced cell adhesion impairment. In a xenograft mouse model, mice treated with ibrutinib exhibited slower tumor growth, with reduced RAC2 expression in tissue. Finally, RAC2 was expressed in ∼65% of human primary MCL tumors, and RAC2 suppression by ibrutinib resulted in cell adhesion impairment. These findings, made with cell lines, a xenograft model, and human primary lymphoma tumors, uncover a novel link between BCR signaling and cell adhesion. This study highlights the importance of RAC2 and cell adhesion in MCL pathogenesis and drug development.


Sujet(s)
Lymphome à cellules du manteau , Animaux , Adhérence cellulaire , Résistance aux médicaments antinéoplasiques , Lymphome à cellules du manteau/traitement médicamenteux , Lymphome à cellules du manteau/génétique , Souris , Récepteurs pour l'antigène des lymphocytes B , Transduction du signal , Microenvironnement tumoral
2.
Rev. Bras. Zootec. (Online) ; 47: e20160360, 2018. graf, ilus
Article de Anglais | VETINDEX | ID: biblio-1512976

RÉSUMÉ

To demonstrate the role of gonadotropin-releasing hormone (GnRH) in yaks (Bos grunniens), we characterized the expression of gonadotropin-releasing hormone receptor (GnRHR) mRNA and protein. The level of GnRHR mRNA in the hypothalamus was higher than that in the pineal gland, pituitary gland, and ovary during estrus. Immunofluorescence analysis showed that GnRHR was expressed in the pinealocyte, synaptic ribbon, and synaptic spherules of the pineal gland and that melatonin interacts with GnRHR via nerve fibers. In the hypothalamus, GnRHR was expressed in the magnocellular neurons and parvocellular neurons. In the pituitary gland, GnRHR was expressed in acidophilic cells and basophilic cells. In the ovary, GnRHR was present in the ovarian follicle and Leydig cells. Gonadotropin-releasing hormone receptor is located in the pineal gland, hypothalamus, pituitary, and gonad during estrus of yaks and is mainly expressed in the hypothalamus and ovaries during the estrus period.(AU)


Sujet(s)
Animaux , Femelle , ARN messager/classification , Bovins/physiologie , Expression des gènes , Récepteur gonadotrophine/analyse , Technique d'immunofluorescence/médecine vétérinaire , Cycle oestral , Réaction de polymérisation en chaine en temps réel
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE