Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Ecol Evol ; 14(3): e11069, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38481759

RÉSUMÉ

The increasing salinization of freshwaters is a growing environmental issue as a result of mining, agriculture, climate change, and the application of de-icing salts in regions that experience ice and snow. Due to narrow osmotic limits, many freshwater species are particularly susceptible to salinization, but it is possible that repeated exposures over time could favor the evolution of increased salt tolerance. Using collected nine populations of larval wood frogs (Rana sylvatica) as eggs from ponds and wetlands with close proximity to roads and spanning a wide gradient of salt concentrations. In the first experiment, we used a time-to-death experiment to examine the salt tolerance. In a second experiment, we examined whether population differences in salt tolerance were associated with trade-offs in growth, development, or behavior in the presence of control water or a sublethal salt concentration. We found that populations collected from ponds with low and intermediate salt concentrations exhibited similar tolerance curves over a 96-h exposure. However, the population from a pond with the highest salt concentration exhibited a much higher tolerance. We also found population differences in growth, development, and activity level among the populations, but these were not associated with population differences in tolerance. In addition, the sublethal concentration of salt had no impact on growth and development, but it did cause a reduction in tadpole activity across the populations. Collectively, these results provide further evidence that some species of freshwater organisms can evolve tolerance to increasing salinization, although it may only occur under relatively high concentrations and without trade-offs in growth, development, or behavior.

2.
Environ Pollut ; 337: 122588, 2023 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-37734634

RÉSUMÉ

Contamination of aquatic ecosystems is pervasive around the world and there has been a growing interest in understanding the ecological and evolutionary impacts. For contaminants such as pesticides, researchers are discovering widespread evolution of increased tolerance in target and non-target species and the role of phenotypic plasticity in facilitating this evolution. In contrast, we know much less about the evolution of tolerance in response to the increasing problem of freshwater salinization. In amphibians, recent studies have discovered that some populations from ponds with high salt pollution (from deicing road salts) have evolved higher tolerance. In this study, we examined whether populations of wood frog tadpoles (Rana sylvatica) possess rapid, inducible tolerance to salinity in a manner similar to their inducible tolerance to pesticides. Using newly hatched tadpoles from nine populations, we discovered that eight of the populations were able to alter their tolerance to salt. However, seven of the eight inducible populations experienced a higher sensitivity to salt while the eighth population experienced a higher tolerance to salt. Such inducible responses likely reflect the interplay of salt dynamics in the ponds, combined with the available genetic variation and selection intensity of each pond. This appears to be the first example of inducible salt tolerance in any animal and future studies should examine the generality of the response and how it may affect the evolution of tolerance to the global issue of freshwater salinization.


Sujet(s)
Écosystème , Pesticides , Animaux , Eau douce , Larve/physiologie , Ranidae/physiologie
3.
Proc Biol Sci ; 289(1987): 20221710, 2022 Nov 30.
Article de Anglais | MEDLINE | ID: mdl-36448282
4.
Oecologia ; 199(4): 951-963, 2022 Aug.
Article de Anglais | MEDLINE | ID: mdl-35980489

RÉSUMÉ

Functional trait diversity determines if ecosystem processes are sensitive to shifts in species abundances or composition. For example, trait variation suggests detritivores process detritus at different rates and make different contributions to whole-assemblage processing, which could be sensitive to compositional shifts. Here, we used a series of microcosm experiments to quantify species-specific coarse and fine particulate organic matter (CPOM and FPOM) processing for ten larval caddisfly species and three non-caddisfly species in high-elevation wetlands. We then compared trait-based models including life history, dietary, and extrinsic traits to determine which traits explained interspecific variation in detritus processing. Finally, we compared processing by mixed caddisfly assemblages in microcosms and natural ponds to additive predictions based on species-specific processing to determine if single-species effects are additive in multi-species assemblages. We found considerable interspecific variation in biomass-specific CPOM (13-fold differences) and FPOM (8-fold differences) processing. Furthermore, on a mass-specific basis, amphipods, chironomids, and caddisflies processed similar amounts of detritus, suggesting non-shredder taxa could process more than previously recognized. Trait models including dietary percent detritus, development rate, body size, and wetland hydroperiod explained 81 and 57% of interspecific variation in CPOM and FPOM processing, respectively. Finally, species-specific additive predictions were strikingly similar to mixed-assemblage processing in microcosms and natural ponds, with the largest difference being a 15% overestimate. Thus, additivity of species-specific processing suggests single-species rates may be useful for understanding functional consequences of shifting assemblages, and a trait-based approach to predicting species-specific processing could support generating additive predictions of whole-assemblage processing.


Sujet(s)
Diptera , Écosystème , Étangs , Animaux , Insectes , Invertébrés , Spécificité d'espèce
5.
J Anim Ecol ; 91(2): 334-344, 2022 02.
Article de Anglais | MEDLINE | ID: mdl-34743321

RÉSUMÉ

While many species distributions are shifting poleward or up in elevation in response to a changing climate, others are shifting their habitats along localized gradients in environmental conditions as abiotic conditions become more stressful. Whether species are moving across regional or local environmental gradients in response to climate change, range-shifting species become embedded in established communities of competitors and predators. The consequences of these shifts for both resident and shifting species are often unknown, as it can be difficult to isolate the effects of multiple species interactions. Using a model system of insects in high-elevation ponds in the Rocky Mountains of Colorado, we sought to disentangle the effects of predation and intraguild interactions on the survival and development of a semi-permanent pond resident caddisfly Limnephilus externus and the habitat-shifting caddis Asynarchus nigriculus that is being forced into semi-permanent ponds as temporary ponds dry too quickly to complete development. We conducted a manipulative in-situ pond cage experiment in which L. externus and A. nigriculus caddisfly larvae in single-species treatments and together were exposed to the presence/absence of predatory Dytiscus diving beetle larvae. This approach allowed us to isolate the effects of intraguild interactions and predation on the survival and development of both the resident and habitat-shifting species. We found that intraguild interactions had strong negative effects on the resident and habitat-shifting species. Intraguild interactions reduced the survival of the resident L. externus and increased the variation in survival of the shifting A. nigriculus. However, Dytiscus predators reduced these negative effects, stabilizing the community by increasing L. externus survival and reducing variation in A. nigriculus survival. We also found that intraguild interactions reduced L. externus biomass but resulted in increased A. nigriculus development. A. nigriculus development was also increased by predation. Our results show that strong intraguild interactions between resident and shifting species are likely to have negative consequences for both species. However, the presence of predators reduces these negative consequences of the habitat shift on both the resident and the shifting.


Sujet(s)
Écosystème , Insectes , Animaux , Changement climatique , Insectes/physiologie , Larve/physiologie , Comportement prédateur/physiologie
6.
Glob Chang Biol ; 27(2): 270-281, 2021 Jan.
Article de Anglais | MEDLINE | ID: mdl-33064868

RÉSUMÉ

Species' geographic range shifts toward higher latitudes and elevations are among the most frequently reported consequences of climate change. However, the role of species interactions in setting range margins remains poorly understood. We used cage experiments in ponds to test competing hypotheses about the role of abiotic and biotic mechanisms for structuring range boundaries of an upslope range-shifting caddisfly Limnephilus picturatus. We found that competition with a ubiquitous species Limnephilus externus significantly decreased L. picturatus survival and emergence at subalpine elevations supporting the notion that species interactions play a critical role in determining upslope range limits. However, without competitors, L. picturatus survival was greater at high-elevation than low-elevation sites. This was contrary to decreases in body mass (a proxy for fecundity) with elevation regardless of the presence of competitors. We ultimately show that species interactions can be important for setting upslope range margins. Yet, our results also highlight the complications in defining what may be abiotically stressful for this species and the importance of considering multiple demographic variables. Understanding how species ranges will respond in a changing climate will require quantifying species interactions and how they are influenced by the abiotic context in which they play out.


Sujet(s)
Écosystème , Insectes , Animaux , Changement climatique
7.
Ecol Lett ; 20(6): 761-769, 2017 06.
Article de Anglais | MEDLINE | ID: mdl-28480571

RÉSUMÉ

A long-standing debate concerns how functional responses are best described. Theory suggests that ratio dependence is consistent with many food web patterns left unexplained by the simplest prey-dependent models. However, for logistical reasons, ratio dependence and predator dependence more generally have seen infrequent empirical evaluation and then only so in specialist predators, which are rare in nature. Here we develop an approach to simultaneously estimate the prey-specific attack rates and predator-specific interference (facilitation) rates of predators interacting with arbitrary numbers of prey and predator species in the field. We apply the approach to surveys and experiments involving two intertidal whelks and their full suite of potential prey. Our study provides strong evidence for predator dependence that is poorly described by the ratio dependent model over manipulated and natural ranges of species abundances. It also indicates how, for generalist predators, even the qualitative nature of predator dependence can be prey-specific.


Sujet(s)
Chaine alimentaire , Animaux , Dynamique des populations , Comportement prédateur
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...