Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 28
Filtrer
1.
Heliyon ; 10(6): e28038, 2024 Mar 30.
Article de Anglais | MEDLINE | ID: mdl-38524534

RÉSUMÉ

Herbal medicinal plants have been used for centuries in traditional medicine, and it is interesting to see how modern research has identified the active compounds responsible for their therapeutic effects. The green synthesis of silver nanoparticles using herbal medicinal plants, such as Swertia chirata, is particularly noteworthy due to its antimicrobial properties. In the current study, the Swertia chirata plant was collected for the first time from the region of Murree, Punjab, Pakistan. After collection, extracts were prepared in different solvents (ethanol, methanol, chloroform, and distilled water), and silver nanoparticles were synthesized by reducing silver nitrate (AgNO3). The UV-visible spectrophotometer, SEM, and EDX were used to characterize the synthesized nanoparticles in terms of their size and shape. The phytochemical analysis of crude extract was performed to determine the presence of different kinds of phytochemicals. The antibacterial activity of plant extracts and the silver nanoparticles were then assessed using the agar well diffusion method against various pathogenic bacteria. The results showed that the plant contains several phytochemicals with remarkable antioxidant potential. The antibacterial analysis revealed that silver nanoparticles and the plant extracts exhibited a significant zone of inhibition against human pathogenic bacteria (Escherichia coli, S. capitis, B. subtilis, and Pseudomonas aeruginosa) as compared to the cefixime and norfloxacin. This implies that the nanoparticles have the potential to be used in nano-medicine applications, such as drug delivery systems, as well as for their antibacterial, antifungal, and antiviral activities. Additionally, the development and application of materials and technologies at the nanometer scale opens possibilities for the creation of novel drugs and therapies. Overall, the study highlights the promising potential of herbal medicinal plants found in Murree, Punjab, Pakistan, and green-synthesized silver nanoparticles in various fields of medicine and nanotechnology.

2.
Biomed Res Int ; 2023: 4187488, 2023.
Article de Anglais | MEDLINE | ID: mdl-37124927

RÉSUMÉ

Background: Tuberculosis (TB) coinfection in human immunodeficiency virus- (HIV-) infected patients is considered a risk of antiretroviral therapy (ART) failure. Coadministration of antitubercular therapy (ATT) with ART is another challenge for TB management. Objective: The study was aimed at investigating contributing factors affecting treatment outcomes in HIV-/TB-coinfected patients. Design: Cross-sectional. Setting. Samples were collected from the Pakistan Institute of Medical Sciences Hospital Islamabad. Subject and Methods. Clinicodemographic and immunovirological factors between the two groups were compared. The Student t-test and chi-square test were applied to compare outcome variables, and logistic regression was applied to determine the effect of TB on virological failure (VF). Main Outcome Measures. TB coinfection did not increase VF even in univariate (p = 0.974) and multivariate analysis at 6 and 12 months of 2nd-line ART start. ARV switching was significant (p = 0.033) in TB-coinfected patients. VF was significantly high in ATT-coadministered patients along with a viral load of ≥1000 (p = 0.000). Sample Size and Characteristics. We recruited seventy-four HIV patients on 2nd-line ART; 33 coinfected with TB were followed for at least 12 months. Conclusion: In HIV-/TB-coinfected patients, CD4 count, CD4 gain, and VF remained comparable to HIV patients with no TB infection. ATT significantly affects the treatment outcome, suggesting drug-to-drug interactions. These factors are important to revisit the therapeutic guidelines to maximize the benefit of dual therapy in resource-limited settings.


Sujet(s)
Agents antiVIH , Co-infection , Infections à VIH , Tuberculose , Humains , Infections à VIH/complications , Infections à VIH/traitement médicamenteux , Co-infection/traitement médicamenteux , VIH (Virus de l'Immunodéficience Humaine) , Études transversales , Pakistan/épidémiologie , Tuberculose/complications , Tuberculose/traitement médicamenteux , Tuberculose/épidémiologie , Antituberculeux/usage thérapeutique , Antirétroviraux/usage thérapeutique , Résultat thérapeutique , Agents antiVIH/usage thérapeutique
3.
J Med Virol ; 95(2): e28527, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36695658

RÉSUMÉ

Endosomal sorting complex required for transport (ESCRT) is essential in the functional operation of endosomal transport in envelopment and budding of enveloped RNA viruses. However, in nonenveloped RNA viruses such as enteroviruses of the Picornaviridae family, the precise function of ESCRT pathway in viral replication remains elusive. Here, we initially evaluated that the ESCRT pathway is important for viral replication upon enterovirus 71 (EV71) infection. Furthermore, we discovered that YM201636, a specific inhibitor of phosphoinositide kinase, FYVE finger containing (PIKFYVE) kinase, significantly suppressed EV71 replication and virus-induced inflammation in vitro and in vivo. Mechanistically, YM201636 inhibits PIKFYVE kinase to block the ESCRT pathway and endosomal transport, leading to the disruption of viral entry and replication complex in subcellular components and ultimately repression of intracellular RNA virus replication and virus-induced inflammatory responses. Further studies found that YM201636 broadly represses the replication of other RNA viruses, including coxsackievirus B3 (CVB3), poliovirus 1 (PV1), echovirus 11 (E11), Zika virus (ZIKV), and vesicular stomatitis virus (VSV), rather than DNA viruses, including adenovirus 3 (ADV3) and hepatitis B virus (HBV). Our findings shed light on the mechanism underlying PIKFYVE-modulated ESCRT pathway involved in RNA virus replication, and also provide a prospective antiviral therapy during RNA viruses infections.


Sujet(s)
Poliovirus , Infection par le virus Zika , Virus Zika , Humains , ARN , Virus Zika/génétique , Réplication virale/physiologie , Poliovirus/génétique , Complexes de tri endosomique requis pour le transport/génétique , Complexes de tri endosomique requis pour le transport/métabolisme , Phosphatidylinositol 3-kinases
4.
J Parasit Dis ; 46(2): 366-376, 2022 Jun.
Article de Anglais | MEDLINE | ID: mdl-35692473

RÉSUMÉ

Polymer based nanoparticles for drug delivery is an alternative approach to overcome drug resistance and drug toxicity especially for cutaneous leishmaniasis treatment. The present study shows synthesis and characterization of Miltefosine loaded chitosan nanoparticles (MFS-CNPs). The synthesized MFS-CNPs were experimented to evaluate the in vitro cytotoxicity and efficacy of the synthesized drug loaded nanoparticles by hemolysis assay and 3-(4, 5- dimethylthiazol-2-yl)-2,5-diphenyletetrazolium bromide (MTT) assay. MFS-CNPs were synthesized by ionic gelation method with sodium tripolyphosphate. The characterization of synthesized NPs was performed to observe the surface morphology, encapsulation efficacy, drug loading content, average size, and zeta potential. In vitro MTT assay was performed to calculate half maximal inhibitory concentration value of synthesized nanoparticles against promastigotes and axenic amastigotes of L. tropica. By using Scanning electron microscope, MFS-CNPs displayed spherical shape having a mean size of 70 nm along with high EE (97%), DLC (91%) and negative surface charge (- 28.0 mV). Dynamic light scattering shows the average size of NPs was 91.4 nm. Moreover, less than 5% hemolytic activity was observed in MFS-CNPs as compared to free MFS in different concentrations (100 µg/ml, 125 µg/ml, 150 µg/ml).It was observed that the effect of MFS-CNPs and free MFS on both forms of the parasite was dose and time dependent. However, the cytotoxic effects of MFS-CNPs were more salient than free MFS on both forms of L. tropica. Using MTT assay, free MFS presented low efficacy at higher concentrations (30 µg/ml) with 21.4 ± 1.3 and 20.5 ± 1.4 mean viability rate of the promastigotes and axenic amastigotes, respectively after 72 h incubation. While MFS-CNPs showed strong antileishmanial effects on both forms of L. tropica (11 ± 0.3 and 14 ± 0.8) mean viability rate after 72 h incubation at (30 µg/ml). When analyzed statistically by the software, Graph Pad Prism version 5, the IC50 value of MFS-CNPs (0.0218 ± 0.01 µg/ml) against promastigotes was effective than free MFS (0.3548 ± 0.17 µg/ml). Similarly, MFS-CNPs activity against axenic amastigotes (0.1008 ± 0.02 µg/ml) was potent than free MFS (0.5320 ± 0.21 µg/ml). Hence, MFS-CNPs exhibited significant antileishmanial activity in vitro. In conclusion, MFS-CNPs manifested enhanced in vitro Leishmanicidal and less hemolytic activity; however more studies are needed to support its efficacy in both animal and human cutaneous leishmaniasis.

5.
Front Med (Lausanne) ; 8: 690523, 2021.
Article de Anglais | MEDLINE | ID: mdl-34557500

RÉSUMÉ

Objectives: The longitudinal characterization and risk of poor outcomes related to cytokine overproduction in critical coronavirus disease 2019 (COVID-19) patients with hyperinflammation in bronchoalveolar lavage requires further investigation. Methods: We enrolled two critically ill patients with comorbidities diagnosed with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detected by RT-PCR during hospitalization. Clinical characteristics, longitudinal immunological, and biochemical parameters of each critical COVID-19 case were collected. Main Results: The clinical characteristics and laboratory results of each case demonstrated critical symptoms of COVID-19 with poor outcomes. Both nasopharyngeal swabs and bronchoalveolar lavage fluid (BALF) samples tested positive for SARS-CoV-2. Two patients received targeted treatments against pathogen infection and inflammation in addition to interventional therapies, except for Patient 2, who received an additional artificial liver system treatment. Hyperinflammation with a dominantly high level of IL-6 was observed in BALF samples from both critical cases with decreased T cell populations. High levels of cytokines and pathological parameters were successively maintained in Patient 1, but rapidly reduced at the late treatment stage in Patient 2. The outcome of Patient 1 is death, whereas the outcome of Patient 2 is recovery. Conclusions: This case report suggests that a high risk of poor outcomes was related to a heavily hyperinflammatory milieu in both the blood and lungs of critical COVID-19 patients. The artificial liver intervention on cytokines overproduction might be beneficial for the recovery of critical COVID-19 patients as a reliable therapy that can be coordinated with targeted treatments, which ought to be further tested in adequately designed and powered clinical trials.

6.
FEBS Lett ; 595(19): 2463-2478, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-34407203

RÉSUMÉ

The activation of the NLRP3 inflammasome plays a crucial role in the innate immune response. During cell division, NLRP3 inflammasome activation must be strictly controlled. In this study, we discover that the anaphase-promoting complex subunit 10 (APC10), a substrate recognition protein of the anaphase-promoting complex/cyclosome (APC/C), is a critical mediator of NLRP3 inflammasome activation. During interphase, APC10 interacts with NLRP3 to promote NLRP3 inflammasome activation, whereas during mitosis, APC10 disassociates from the NLRP3 inflammasome to repress inflammatory responses. This study reveals a distinct mechanism by which APC10 serves as a switch for NLRP3 inflammasome activation during the cell cycle.


Sujet(s)
Sous-unité APC10 du complexe promoteur de l'anaphase/métabolisme , Cycle cellulaire , Inflammasomes/métabolisme , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Animaux , Humains , Ubiquitination
7.
Signal Transduct Target Ther ; 6(1): 308, 2021 08 18.
Article de Anglais | MEDLINE | ID: mdl-34408131

RÉSUMÉ

Cytokine storm induced by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a major pathological feature of Coronavirus Disease 2019 (COVID-19) and a crucial determinant in COVID-19 prognosis. Understanding the mechanism underlying the SARS-CoV-2-induced cytokine storm is critical for COVID-19 control. Here, we identify that SARS-CoV-2 ORF3a and host hypoxia-inducible factor-1α (HIF-1α) play key roles in the virus infection and pro-inflammatory responses. RNA sequencing shows that HIF-1α signaling, immune response, and metabolism pathways are dysregulated in COVID-19 patients. Clinical analyses indicate that HIF-1α production, inflammatory responses, and high mortalities occurr in elderly patients. HIF-1α and pro-inflammatory cytokines are elicited in patients and infected cells. Interestingly, SARS-CoV-2 ORF3a induces mitochondrial damage and Mito-ROS production to promote HIF-1α expression, which subsequently facilitates SARS-CoV-2 infection and cytokines production. Notably, HIF-1α also broadly promotes the infection of other viruses. Collectively, during SARS-CoV-2 infection, ORF3a induces HIF-1α, which in turn aggravates viral infection and inflammatory responses. Therefore, HIF-1α plays an important role in promoting SARS-CoV-2 infection and inducing pro-inflammatory responses to COVID-19.


Sujet(s)
COVID-19/métabolisme , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Mitochondries/métabolisme , SARS-CoV-2/métabolisme , Transduction du signal , Protéines viroporines/métabolisme , Cellules A549 , Animaux , Chlorocebus aethiops , Cellules HEK293 , Cellules HeLa , Humains , Mitochondries/anatomopathologie , RNA-Seq , Cellules THP-1 , Cellules Vero
8.
Virulence ; 12(1): 1795-1807, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34282707

RÉSUMÉ

Zika virus (ZIKV) infection can cause severe neurological disorders, including Guillain-Barre syndrome and meningoencephalitis in adults and microcephaly in fetuses. Here, we reveal that laminin receptor 1 (LAMR1) is a novel host resistance factor against ZIKV infection. Mechanistically, we found that LAMR1 binds to ZIKV envelope (E) protein via its intracellular region and attenuates E protein ubiquitination through recruiting the deubiquitinase eukaryotic translation initiation factor 3 subunit 5 (EIF3S5). We further found that the conserved G282 residue of E protein is essential for its interaction with LAMR1. Moreover, a G282A substitution abolished the binding of E protein to LAMR1 and inhibited LAMR1-mediated E protein deubiquitination. Together, our results indicated that LAMR1 represses ZIKV infection through binding to E protein and attenuating its ubiquitination.


Sujet(s)
Récepteur laminine/métabolisme , Protéines ribosomiques/métabolisme , Ubiquitination , Protéines de l'enveloppe virale/composition chimique , Infection par le virus Zika , Humains , Virus Zika
9.
PLoS Pathog ; 17(7): e1008603, 2021 07.
Article de Anglais | MEDLINE | ID: mdl-34310658

RÉSUMÉ

Dengue virus (DENV) is a mosquito-borne pathogen that causes a spectrum of diseases including life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular leakage is a common clinical crisis in DHF/DSS patients and highly associated with increased endothelial permeability. The presence of vascular leakage causes hypotension, circulatory failure, and disseminated intravascular coagulation as the disease progresses of DHF/DSS patients, which can lead to the death of patients. However, the mechanisms by which DENV infection caused the vascular leakage are not fully understood. This study reveals a distinct mechanism by which DENV induces endothelial permeability and vascular leakage in human endothelial cells and mice tissues. We initially show that DENV2 promotes the matrix metalloproteinase-9 (MMP-9) expression and secretion in DHF patients' sera, peripheral blood mononuclear cells (PBMCs), and macrophages. This study further reveals that DENV non-structural protein 1 (NS1) induces MMP-9 expression through activating the nuclear factor κB (NF-κB) signaling pathway. Additionally, NS1 facilitates the MMP-9 enzymatic activity, which alters the adhesion and tight junction and vascular leakage in human endothelial cells and mouse tissues. Moreover, NS1 recruits MMP-9 to interact with ß-catenin and Zona occludens protein-1/2 (ZO-1 and ZO-2) and to degrade the important adhesion and tight junction proteins, thereby inducing endothelial hyperpermeability and vascular leakage in human endothelial cells and mouse tissues. Thus, we reveal that DENV NS1 and MMP-9 cooperatively induce vascular leakage by impairing endothelial cell adhesion and tight junction, and suggest that MMP-9 may serve as a potential target for the treatment of hypovolemia in DSS/DHF patients.


Sujet(s)
Dengue/anatomopathologie , Cellules endothéliales/métabolisme , Matrix metalloproteinase 9/métabolisme , Protéines virales non structurales/métabolisme , Animaux , Perméabilité capillaire/physiologie , Adhérence cellulaire/physiologie , Dengue/métabolisme , Dengue/virologie , Virus de la dengue/métabolisme , Humains , Souris , Jonctions serrées/métabolisme
10.
Front Bioeng Biotechnol ; 9: 616555, 2021.
Article de Anglais | MEDLINE | ID: mdl-34026739

RÉSUMÉ

Bone serves to maintain the shape of the human body due to its hard and solid nature. A loss or weakening of bone tissues, such as in case of traumatic injury, diseases (e.g., osteosarcoma), or old age, adversely affects the individuals quality of life. Although bone has the innate ability to remodel and regenerate in case of small damage or a crack, a loss of a large volume of bone in case of a traumatic injury requires the restoration of bone function by adopting different biophysical approaches and chemotherapies as well as a surgical reconstruction. Compared to the biophysical and chemotherapeutic approaches, which may cause complications and bear side effects, the surgical reconstruction involves the implantation of external materials such as ceramics, metals, and different other materials as bone substitutes. Compared to the synthetic substitutes, the use of biomaterials could be an ideal choice for bone regeneration owing to their renewability, non-toxicity, and non-immunogenicity. Among the different types of biomaterials, nanocellulose-based materials are receiving tremendous attention in the medical field during recent years, which are used for scaffolding as well as regeneration. Nanocellulose not only serves as the matrix for the deposition of bioceramics, metallic nanoparticles, polymers, and different other materials to develop bone substitutes but also serves as the drug carrier for treating osteosarcomas. This review describes the natural sources and production of nanocellulose and discusses its important properties to justify its suitability in developing scaffolds for bone and cartilage regeneration and serve as the matrix for reinforcement of different materials and as a drug carrier for treating osteosarcomas. It discusses the potential health risks, immunogenicity, and biodegradation of nanocellulose in the human body.

11.
Front Microbiol ; 12: 656353, 2021.
Article de Anglais | MEDLINE | ID: mdl-33868214

RÉSUMÉ

Despite the availability of effective vaccines, hepatitis B virus (HBV) is still a major health issue, and approximately 350 million people have been chronically infected with HBV throughout the world. Interferons (IFNs) are the key molecules in the innate immune response that restrict several kinds of viral infections via the induction of hundreds of IFN-stimulated genes (ISGs). The objective of this study was to confirm if interferon alpha-inducible protein 27 (IFI27) as an ISG could inhibit HBV gene expression and DNA replication both in cell culture and in a mouse model. In human hepatoma cells, IFI27 was highly induced by the stimulation of IFN-alpha (IFN-α), and it potentiated the anti-HBV activity. The overexpression of IFI27 inhibited, while its silencing enhanced the HBV replication in HepG2 cell. However, the knocking out of IFI27 in HepG2 cells robustly increases the formation of viral DNA, RNA, and proteins. Detailed mechanistic analysis of the HBV genome showed that a sequence [nucleotide (nt) 1715-1815] of the EnhII/Cp promoter was solely responsible for viral inhibition. Similarly, the hydrodynamic injection of IFI27 expression constructs along with the HBV genome into mice resulted in a significant reduction in viral gene expression and DNA replication. In summary, our studies suggested that IFI27 contributed a vital role in HBV gene expression and replication and IFI27 may be a potential antiviral agent for the treatment of HBV.

12.
Front Immunol ; 12: 634937, 2021.
Article de Anglais | MEDLINE | ID: mdl-33868257

RÉSUMÉ

Hepatitis B virus is an enveloped DNA virus, that infects more than three hundred and sixty million people worldwide and leads to severe chronic liver diseases. Interferon-alpha inducible protein 6 (IFI6) is an IFN-stimulated gene (ISG) whose expression is highly regulated by the stimulation of type I IFN-alpha that restricts various kinds of virus infections by targeting different stages of the viral life cycle. This study aims to investigate the antiviral activity of IFI6 against HBV replication and gene expression. The IFI6 was highly induced by the stimulation of IFN-α in hepatoma cells. The overexpression of IFI6 inhibited while knockdown of IFI6 elevated replication and gene expression of HBV in HepG2 cells. Further study determined that IFI6 inhibited HBV replication by reducing EnhII/Cp of the HBV without affecting liver enriched transcription factors that have significant importance in regulating HBV enhancer activity. Furthermore, deletion mutation of EnhII/Cp and CHIP analysis revealed 100 bps (1715-1815 nt) putative sites involved in IFI6 mediated inhibition of HBV. Detailed analysis with EMSA demonstrated that 1715-1770 nt of EnhII/Cp was specifically involved in binding with IFI6 and restricted EnhII/Cp promoter activity. Moreover, IFI6 was localized mainly inside the nucleus to involve in the anti-HBV activity of IFI6. In vivo analysis based on the hydrodynamic injection of IFI6 expression plasmid along with HBV revealed significant inhibition of HBV DNA replication and gene expression. Overall, our results suggested a novel mechanism of IFI6 mediated HBV regulation that could develop potential therapeutics for efficient HBV infection treatment.


Sujet(s)
Virus de l'hépatite B/croissance et développement , Hépatite B/virologie , Foie/virologie , Protéines mitochondriales/métabolisme , Réplication virale , Animaux , Sites de fixation , Régulation de l'expression des gènes viraux , Cellules HEK293 , Cellules HepG2 , Hépatite B/génétique , Hépatite B/métabolisme , Virus de l'hépatite B/génétique , Virus de l'hépatite B/pathogénicité , Interactions hôte-pathogène , Humains , Interféron alpha/pharmacologie , Foie/effets des médicaments et des substances chimiques , Foie/métabolisme , Mâle , Souris de lignée C57BL , Protéines mitochondriales/génétique , Régions promotrices (génétique) , Protéines virales/génétique , Protéines virales/métabolisme
13.
PLoS Negl Trop Dis ; 15(4): e0009362, 2021 04.
Article de Anglais | MEDLINE | ID: mdl-33891593

RÉSUMÉ

Zika virus (ZIKV) is a kind of flavivirus emerged in French Polynesia and Brazil, and has led to a worldwide public health concern since 2016. ZIKV infection causes various neurological conditions, which are associated with fetus brain development or peripheral and central nervous systems (PNS/CNS) functional problems. To date, no vaccine or any specific antiviral therapy against ZIKV infection are available. It urgently needs efforts to explore the underlying molecular mechanisms of ZIKV-induced neural pathogenesis. ZIKV favorably infects neural and glial cells specifically astrocytes, consequently dysregulating gene expression and pathways with impairment of process neural cells. In this study, we applied a model for ZIKV replication in mouse primary astrocytes (MPAs) and profiled temporal alterations in the host transcriptomes upon ZIKV infection. Among the RNA-sequencing data of 27,812 genes, we examined 710 genes were significantly differentially expressed by ZIKV, which lead to dysregulation of numerous functions including neurons development and migration, glial cells differentiation, myelinations, astrocytes projection, neurogenesis, and brain development, along with multiple pathways including Hippo signaling pathway, tight junction, PI3K-Akt signaling pathway, and focal adhesion. Furthermore, we confirmed the dysregulation of the selected genes in MPAs and human astroglioma U251 cells. We found that PTBP1, LIF, GHR, and PTBP3 were upregulated while EDNRB and MBP were downregulated upon ZIKV infection. The current study highlights the ZIKV-mediated potential genes associated with neurodevelopment or related diseases.


Sujet(s)
Astrocytes/métabolisme , Astrocytes/virologie , Encéphale/anatomopathologie , Neurogenèse/génétique , Virus Zika/pathogénicité , Animaux , Astrocytes/anatomopathologie , Lignée cellulaire , Expression des gènes , Humains , Souris , Souris de lignée C57BL , Phosphatidylinositol 3-kinases/métabolisme , Analyse de séquence d'ARN , Transduction du signal , Transcriptome , Régulation positive , Réplication virale , Virus Zika/physiologie
14.
Hum Vaccin Immunother ; 17(4): 1113-1121, 2021 04 03.
Article de Anglais | MEDLINE | ID: mdl-33064630

RÉSUMÉ

A novel coronavirus (2019-nCov) emerged in China, at the end of December 2019 which posed an International Public Health Emergency, and later declared as a global pandemic by the World Health Organization (WHO). The International Committee on Taxonomy of Viruses (ICTV) named it SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2), while the disease was named COVID-19 (Coronavirus Disease- 2019). Many questions related to the exact mode of transmission, animal origins, and antiviral therapeutics are not clear yet. Nevertheless, it is required to urgently launch a new protocol to evaluate the side effects of unapproved vaccines and antiviral therapeutics to accelerate the clinical application of new drugs. In this review, we highlight the most salient characteristics and recent findings of COVID-19 disease, molecular virology, interspecies mechanisms, and health consequences related to this disease.


Sujet(s)
Antiviraux/pharmacologie , Vaccins contre la COVID-19/immunologie , COVID-19/anatomopathologie , COVID-19/transmission , Inhibiteurs des protéases des coronavirus/pharmacologie , AMP/analogues et dérivés , AMP/pharmacologie , Alanine/analogues et dérivés , Alanine/pharmacologie , Animaux , Antiviraux/effets indésirables , COVID-19/prévention et contrôle , Vaccins contre la COVID-19/effets indésirables , Chiroptera/virologie , Humains , Lopinavir/pharmacologie , Ritonavir/pharmacologie , SARS-CoV-2/effets des médicaments et des substances chimiques , Attachement viral , Pénétration virale , Traitements médicamenteux de la COVID-19
15.
mBio ; 11(6)2020 11 17.
Article de Anglais | MEDLINE | ID: mdl-33203755

RÉSUMÉ

Enteroviruses infect gastrointestinal epithelium cells, cause multiple human diseases, and present public health risks worldwide. However, the mechanisms underlying host immune responses in intestinal mucosa against the early enterovirus infections remain elusive. Here, we showed that human enteroviruses including enterovirus 71 (EV71), coxsackievirus B3 (CVB3), and poliovirus 1 (PV1) predominantly induce type III interferons (IFN-λ1 and IFN-λ2/3), rather than type I interferons (IFN-α and IFN-ß), in cultured human normal and cancerous intestine epithelial cells (IECs), mouse intestine tissues, and human clinical intestine specimens. Mechanistic studies demonstrated that IFN-λ production is induced upon enterovirus infection through the Toll-like receptor 3/interferon regulatory factor 1 (TLR3/IRF1) signaling pathway in IECs. In turn, the supplementation of IFN-λ subsequently induces intrinsically antiviral responses against enterovirus replication. Notably, intraperitoneal injection in neonatal C57BL/6J mice with mouse recombinant IFN-λ2 protein represses EV71 replication and protects mice from viral lethal effects. Altogether, these results revealed a distinct mechanism by which the host elicited immune responses against enterovirus infections in intestine through activating the TLR3/IRF1/type III IFN axis. The new findings would provide an antiviral strategy for the prevention and treatment of enterovirus infections and associated diseases.IMPORTANCE Enterovirus infections are significant sources of human diseases and public health risks worldwide, but little is known about the mechanism of innate immune response in host intestine epithelial surface during the viral replication. We reported the epithelial immune response in cultured human normal and cancerous cells (IECs), mouse tissues, and human clinical intestine specimens following infection with enterovirus 71. The results mechanistically revealed type III interferons (IFN-λ1 and IFN-λ2/3), rather than type I interferons (IFN-α and IFN-ß), as the dominant production through TLR3/IRF1 signaling upon multiple human enterovirus infection, including enterovirus 71 (EV71), coxsackievirus B3 (CVB3), and poliovirus 1 (PV1). IFN-λ subsequently induced antiviral activity against enterovirus replication in vitro and in vivo. These studies uncovered the role of the novel process of type III IFN production involved in the TLR3/IRF1 pathway in host intestine upon enterovirus infection, which highlighted a regulatory manner of antiviral defense in intestine during enterovirus infection.


Sujet(s)
Infections à entérovirus/immunologie , Enterovirus/immunologie , Immunité innée , Facteur-1 de régulation d'interféron/métabolisme , Interférons/métabolisme , Récepteur de type Toll-3/métabolisme , Animaux , Enterovirus/génétique , Enterovirus/physiologie , Infections à entérovirus/virologie , Femelle , Humains , Facteur-1 de régulation d'interféron/génétique , Interférons/génétique , Intestins/immunologie , Intestins/virologie , Mâle , Souris , Souris de lignée C57BL , Transduction du signal , Récepteur de type Toll-3/génétique , Réplication virale , Interféron lambda
16.
Cell Rep ; 33(3): 108297, 2020 10 20.
Article de Anglais | MEDLINE | ID: mdl-33086059

RÉSUMÉ

The immune system is not only required for preventing threats exerted by pathogens but also essential for developing immune tolerance to avoid tissue damage. This study identifies a distinct mechanism by which MYSM1 suppresses innate immunity and autoimmunity. The expression of MYSM1 is induced upon DNA virus infection and by intracellular DNA stimulation. MYSM1 subsequently interacts with STING and cleaves STING K63-linked ubiquitination to suppress cGAS-STING signaling. Notably, Mysm1-deficient mice exhibit a hyper-inflammatory response, acute tissue damage, and high mortality upon virus infection. Moreover, in the PBMCs of patients with systemic lupus erythematosus (SLE), MYSM1 production decreases, while type I interferons and pro-inflammatory cytokine expressions increase. Importantly, MYSM1 treatment represses the production of IFNs and pro-inflammatory cytokines in the PBMCs of SLE patients. Thus, MYSM1 is a critical repressor of innate immunity and autoimmunity and is thus a potential therapeutic agent for infectious, inflammatory, and autoimmune diseases.


Sujet(s)
Protéines membranaires/métabolisme , Nucleotidyltransferases/métabolisme , Transactivateurs/métabolisme , Ubiquitin-specific proteases/métabolisme , Adulte , Animaux , Maladies auto-immunes , Auto-immunité/immunologie , Chine , Femelle , Humains , Immunité innée/immunologie , Interféron de type I/immunologie , Interféron de type I/métabolisme , Interféron de type I/physiologie , Lupus érythémateux disséminé/génétique , Lupus érythémateux disséminé/métabolisme , Mâle , Protéines membranaires/physiologie , Souris , Souris de lignée C57BL , Souris knockout , Adulte d'âge moyen , Nucleotidyltransferases/physiologie , Transduction du signal/génétique , Transactivateurs/génétique , Transactivateurs/immunologie , Ubiquitin-specific proteases/génétique , Ubiquitin-specific proteases/immunologie
17.
mBio ; 11(5)2020 10 27.
Article de Anglais | MEDLINE | ID: mdl-33109760

RÉSUMÉ

The proteasome is a major protein degradation machinery with essential and diverse biological functions. Upon induction by cytokines, proteasome subunits ß1, ß2, and ß5 are replaced by ß1i/LMP2, ß2i/MECL-1, and ß5i/LMP7, resulting in the formation of an immunoproteasome (iProteasome). iProteasome-degraded products are loaded onto the major histocompatibility complex class I (MHC-I), regulating immune responses and inducing cytotoxic T lymphocytes (CTLs). Human immunodeficiency virus type 1 (HIV-1) is the causal agent of AIDS. HIV-1-specific CTLs represent a critical immune mechanism limiting viral replication. HIV-1 negative regulatory factor (Nef) counteracts host immunity, particularly the response involving MHC-I/CTL. This study identifies a distinct mechanism by which Nef facilitates immune evasion via suppressing the function of iProteasome and MHC-I. Nef interacts with LMP7 on the endoplasmic reticulum (ER), downregulating the incorporation of LMP7 into iProteasome and thereby attenuating its formation. Moreover, Nef represses the iProteasome function of protein degradation, MHC-I trafficking, and antigen presentation.IMPORTANCE The ubiquitin-proteasome system (UPS) is essential for the degradation of damaged proteins, which takes place in the proteasome. Upon activation by cytokines, the catalytic subunits of the proteasome are replaced by distinct isoforms resulting in the formation of an immunoproteasome (iProteasome). iProteasome generates peptides used by major histocompatibility complex class I (MHC-I) for antigen presentation and is essential for immune responses. HIV-1 is the causative agent of AIDS, and HIV-1-specific cytotoxic T lymphocytes (CTLs) provide immune responses limiting viral replication. This study identifies a distinct mechanism by which HIV-1 promotes immune evasion. The viral protein negative regulatory factor (Nef) interacts with a component of iProteasome, LMP7, attenuating iProteasome formation and protein degradation function, and thus repressing the MHC-I antigen presentation activity of MHC-I. Therefore, HIV-1 targets LMP7 to inhibit iProteasome activation, and LMP7 may be used as the target for the development of anti-HIV-1/AIDS therapy.


Sujet(s)
Présentation d'antigène , Antigènes d'histocompatibilité de classe I/immunologie , Proteasome endopeptidase complex/immunologie , Produits du gène nef du virus de l'immunodéficience humaine/immunologie , Cellules HEK293 , Cellules HeLa , Humains , Échappement immunitaire
18.
Int Immunopharmacol ; 86: 106746, 2020 Sep.
Article de Anglais | MEDLINE | ID: mdl-32619956

RÉSUMÉ

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused coronavirus disease 2019 (COVID-19) epidemic in China, December 2019. The clinical features and treatment of COVID-19 patients remain largely elusive. However, accurate detection is required for SARS-CoV-2 infection diagnosis. We aimed to evaluate the antibodies-based test and nucleic acid-based test for SARS-CoV-2-infected patients. METHODS: We retrospectively studied 133 patients diagnosed with SARS-CoV-2 and admitted to Renmin Hospital of Wuhan University, China, from January 23 to March 1, 2020. Demographic data, clinical records, laboratory tests, and outcomes were collected. Data were accessed by SARS-CoV-2 IgM-IgG antibody test and real-time reverse transcriptase PCR (RT-PCR) detection for SARS-CoV-2 nucleic acid in COVID-19 patients. RESULTS: Of 133 COVID-19 patients, there were 44 moderate cases, 52 severe cases, and 37 critical cases with no differences in gender and age among three subgroups. In RT-PCR detection, the positive rate was 65.9%, 71.2%, and 67.6% in moderate, severe, and critical cases, respectively. Whereas the positive rate of IgM/IgG antibody detection in patients was 79.5%/93.2%, 82.7%/100%, and 73.0%/97.3% in moderate, severe, and critical cases, respectively. Moreover, the IgM and IgG antibodies concentrations were also examined with no differences among three subgroups. CONCLUSION: The IgM-IgG antibody test exhibited a useful adjunct to RT-PCR detection, and improved the accuracy in COVID-19 diagnosis regardless of the severity of illness, which provides an effective complement to the false-negative results from a nucleic acid test for SARS-CoV-2 infection diagnosis after onsets.


Sujet(s)
Anticorps antiviraux/sang , Betacoronavirus/isolement et purification , Techniques de laboratoire clinique/méthodes , Infections à coronavirus/diagnostic , Pneumopathie virale/diagnostic , ARN viral/isolement et purification , Sujet âgé , Anticorps antiviraux/immunologie , Betacoronavirus/génétique , Betacoronavirus/immunologie , COVID-19 , Dépistage de la COVID-19 , Vaccins contre la COVID-19 , Chine/épidémiologie , Infections à coronavirus/sang , Infections à coronavirus/immunologie , Infections à coronavirus/virologie , Études de faisabilité , Femelle , Humains , Immunoglobuline G/sang , Immunoglobuline G/immunologie , Immunoglobuline M/sang , Immunoglobuline M/immunologie , Mâle , Adulte d'âge moyen , Pandémies , Pneumopathie virale/sang , Pneumopathie virale/immunologie , Pneumopathie virale/virologie , Études rétrospectives , RT-PCR , SARS-CoV-2 , Tests sérologiques/méthodes , Indice de gravité de la maladie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE