Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Rep ; 12(1): 20966, 2022 12 05.
Article de Anglais | MEDLINE | ID: mdl-36470953

RÉSUMÉ

Fragile X syndrome (FXS) is a neurodevelopmental disorder that is caused by the loss of Fragile X-linked mental retardation protein (FMRP), an RNA binding protein that can bind and recognize different RNA structures and regulate the target mRNAs' translation involved in neuronal synaptic plasticity. Perturbations of this gene expression network have been related to abnormal behavioral symptoms such as hyperactivity, and impulsivity. Considering the roles of FMRP in the modulation of mRNA translation, we investigated the differentially expressed genes which might be targeted to revert to normal and ameliorate behavioral symptoms. Gene expression data was analyzed and used the connectivity map (CMap) to understand the changes in gene expression in FXS and predict the effective drug candidates. We analyzed the GSE7329 dataset that had 15 control and 8 FXS patients' lymphoblastoid samples. Among 924 genes, 42 genes were selected as signatures for CMap analysis, and 24 associated drugs were found. Pirenperone was selected as a potential drug candidate for FXS for its possible antipsychotic effect. Treatment of pirenperone increased the expression level of Fmr1 gene. Moreover, pirenperone rescued the behavioral deficits in Fmr1 KO mice including hyperactivity, spatial memory, and impulsivity. These results suggest that pirenperone is a new drug candidate for FXS, which should be verified in future studies.


Sujet(s)
Protéine du syndrome X fragile , Syndrome du chromosome X fragile , Pipéridines , Animaux , Souris , Modèles animaux de maladie humaine , Protéine du syndrome X fragile/génétique , Protéine du syndrome X fragile/métabolisme , Syndrome du chromosome X fragile/traitement médicamenteux , Syndrome du chromosome X fragile/génétique , Syndrome du chromosome X fragile/métabolisme , Souris knockout , Plasticité neuronale , Pipéridines/usage thérapeutique
2.
Biomol Ther (Seoul) ; 27(2): 168-177, 2019 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-30580503

RÉSUMÉ

Dysregulation of excitatory neurotransmission has been implicated in the pathogenesis of neuropsychiatric disorders. Pharmacological inhibition of N-methyl-D-aspartate (NMDA) receptors is widely used to model neurobehavioral pathologies and underlying mechanisms. There is ample evidence that overstimulation of NMDA-dependent neurotransmission may induce neurobehavioral abnormalities, such as repetitive behaviors and hypersensitization to nociception and cognitive disruption, pharmacological modeling using NMDA has been limited due to the induction of neurotoxicity and blood brain barrier breakdown, especially in young animals. In this study, we examined the effects of intraperitoneal NMDA-administration on nociceptive and repetitive behaviors in ICR mice. Intraperitoneal injection of NMDA induced repetitive grooming and tail biting/licking behaviors in a dose- and age-dependent manner. Nociceptive and repetitive behaviors were more prominent in juvenile mice than adult mice. We did not observe extensive blood brain barrier breakdown or neuronal cell death after peritoneal injection of NMDA, indicating limited neurotoxic effects despite a significant increase in NMDA concentration in the cerebrospinal fluid. These findings suggest that the observed behavioral changes were not mediated by general NMDA toxicity. In the hot plate test, we found that the latency of paw licking and jumping decreased in the NMDA-exposed mice especially in the 75 mg/kg group, suggesting increased nociceptive sensitivity in NMDA-treated animals. Repetitive behaviors and increased pain sensitivity are often comorbid in psychiatric disorders (e.g., autism spectrum disorder). Therefore, the behavioral characteristics of intraperitoneal NMDA-administered mice described herein may be valuable for studying the mechanisms underlying relevant disorders and screening candidate therapeutic molecules.

3.
Exp Neurobiol ; 27(5): 321-343, 2018 Oct.
Article de Anglais | MEDLINE | ID: mdl-30429643

RÉSUMÉ

Sex is an important factor in understanding the clinical presentation, management, and developmental trajectory of children with neuropsychiatric disorders. While much is known about the clinical and neurobehavioral profiles of males with neuropsychiatric disorders, surprisingly little is known about females in this respect. Animal models may provide detailed mechanistic information about sex differences in autism spectrum disorder (ASD) in terms of manifestation, disease progression, and development of therapeutic options. This review aims to widen our understanding of the role of sex in autism spectrum disorder, by summarizing and comparing behavioral characteristics of animal models. Our current understanding of how differences emerge in boys and girls with neuropsychiatric disorders is limited: Information derived from animal studies will stimulate future research on the role of biological maturation rates, sex hormones, sex-selective protective (or aggravating) factors and psychosocial factors, which are essential to devise sex precision medicine and to improve diagnostic accuracy. Moreover, there is a strong need of novel strategies to elucidate the major mechanisms leading to sex-specific autism features, as well as novel models or methods to examine these sex differences.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...