Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Indian J Pharmacol ; 56(3): 198-205, 2024 May 01.
Article de Anglais | MEDLINE | ID: mdl-39078184

RÉSUMÉ

OBJECTIVES: Single-nucleotide polymorphism (SNP) codes for multiple amino acids, impacting protein functions and disease prognosis. Runt-related transcription factor-2 (RUNX2), a transcription factor linked to osteoblast differentiation, regulates cell proliferation in endothelium and osteoblastic cells. Understanding Runx2's role in nonosseous tissues is rapidly advancing. This study aims to identify harmful SNPs of the RUNX2 gene that may alter disease susceptibility using computational techniques. METHODS: The study uses various in silico methods to identify nonsynonymous SNPs (nsSNPs) of the RUNX2 gene, which could potentially alter protein structure and functions, with further analyses by I-Mutant, ConSurf, Netsurf 3.0, GeneMANIA, and Have (y)Our Protein Explained. RESULTS: Six missense nsSNPs were identified as potentially harmful, disease-causing, and damaging. Four were found to be unstable, while five were conserved. All six nsSNPs had a coiled secondary structure. Five nsSNPs were found to be destabilized. CONCLUSION: The RUNX2 gene's deleterious missense nsSNPs were identified by this study, and they may be exploited in future experimental studies. These high-risk nsSNPs might be considered target molecules in therapeutic and diagnostic therapies in teeth and bone development.


Sujet(s)
Simulation numérique , Sous-unité alpha 1 du facteur CBF , Mutation faux-sens , Polymorphisme de nucléotide simple , Sous-unité alpha 1 du facteur CBF/génétique , Humains , Biologie informatique , Prédisposition génétique à une maladie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE