Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nat Commun ; 15(1): 1181, 2024 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-38360922

RÉSUMÉ

Nucleobase editors represent an emerging technology that enables precise single-base edits to the genomes of eukaryotic cells. Most nucleobase editors use deaminase domains that act upon single-stranded DNA and require RNA-guided proteins such as Cas9 to unwind the DNA prior to editing. However, the most recent class of base editors utilizes a deaminase domain, DddAtox, that can act upon double-stranded DNA. Here, we target DddAtox fragments and a FokI-based nickase to the human CIITA gene by fusing these domains to arrays of engineered zinc fingers (ZFs). We also identify a broad variety of Toxin-Derived Deaminases (TDDs) orthologous to DddAtox that allow us to fine-tune properties such as targeting density and specificity. TDD-derived ZF base editors enable up to 73% base editing in T cells with good cell viability and favorable specificity.


Sujet(s)
Cytidine deaminase , Édition de gène , Humains , Cytidine deaminase/génétique , Cytidine deaminase/métabolisme , ADN/métabolisme , Doigts de zinc , Cytidine/génétique , Systèmes CRISPR-Cas
2.
Nat Biotechnol ; 37(8): 945-952, 2019 08.
Article de Anglais | MEDLINE | ID: mdl-31359006

RÉSUMÉ

Engineered nucleases have gained broad appeal for their ability to mediate highly efficient genome editing. However the specificity of these reagents remains a concern, especially for therapeutic applications, given the potential mutagenic consequences of off-target cleavage. Here we have developed an approach for improving the specificity of zinc finger nucleases (ZFNs) that engineers the FokI catalytic domain with the aim of slowing cleavage, which should selectively reduce activity at low-affinity off-target sites. For three ZFN pairs, we engineered single-residue substitutions in the FokI domain that preserved full on-target activity but showed a reduction in off-target indels of up to 3,000-fold. By combining this approach with substitutions that reduced the affinity of zinc fingers, we developed ZFNs specific for the TRAC locus that mediated 98% knockout in T cells with no detectable off-target activity at an assay background of ~0.01%. We anticipate that this approach, and the FokI variants we report, will enable routine generation of nucleases for gene editing with no detectable off-target activity.


Sujet(s)
Clivage de l'ADN , Édition de gène/méthodes , Lymphocytes T , Séquence nucléotidique , ADN/génétique , ADN/métabolisme , Cytométrie en flux , Cellules souches hématopoïétiques , Humains , Cellules K562 , Domaines protéiques , ARN messager
3.
Nat Med ; 25(7): 1131-1142, 2019 07.
Article de Anglais | MEDLINE | ID: mdl-31263285

RÉSUMÉ

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion in the huntingtin gene (HTT), which codes for the pathologic mutant HTT (mHTT) protein. Since normal HTT is thought to be important for brain function, we engineered zinc finger protein transcription factors (ZFP-TFs) to target the pathogenic CAG repeat and selectively lower mHTT as a therapeutic strategy. Using patient-derived fibroblasts and neurons, we demonstrate that ZFP-TFs selectively repress >99% of HD-causing alleles over a wide dose range while preserving expression of >86% of normal alleles. Other CAG-containing genes are minimally affected, and virally delivered ZFP-TFs are active and well tolerated in HD neurons beyond 100 days in culture and for at least nine months in the mouse brain. Using three HD mouse models, we demonstrate improvements in a range of molecular, histopathological, electrophysiological and functional endpoints. Our findings support the continued development of an allele-selective ZFP-TF for the treatment of HD.


Sujet(s)
Allèles , Protéine huntingtine/génétique , Maladie de Huntington/thérapie , Mutation , Transcription génétique , Doigts de zinc , Animaux , Cellules cultivées , Modèles animaux de maladie humaine , Femelle , Humains , Maladie de Huntington/génétique , Mâle , Souris , Souris de lignée C57BL , Souris de lignée CBA , Neuroprotection , Répétitions de trinucléotides
4.
Nat Commun ; 10(1): 1133, 2019 03 08.
Article de Anglais | MEDLINE | ID: mdl-30850604

RÉSUMÉ

Genome editing for therapeutic applications often requires cleavage within a narrow sequence window. Here, to enable such high-precision targeting with zinc-finger nucleases (ZFNs), we have developed an expanded set of architectures that collectively increase the configurational options available for design by a factor of 64. These new architectures feature the functional attachment of the FokI cleavage domain to the amino terminus of one or both zinc-finger proteins (ZFPs) in the ZFN dimer, as well as the option to skip bases between the target triplets of otherwise adjacent fingers in each zinc-finger array. Using our new architectures, we demonstrate targeting of an arbitrarily chosen 28 bp genomic locus at a density that approaches 1.0 (i.e., efficient ZFNs available for targeting almost every base step). We show that these new architectures may be used for targeting three loci of therapeutic significance with a high degree of precision, efficiency, and specificity.


Sujet(s)
Type II site-specific deoxyribonuclease/génétique , Édition de gène/méthodes , Génome humain , Ingénierie des protéines/méthodes , Nucléases à doigts de zinc/génétique , Appariement de bases , Séquence nucléotidique , DNA-directed RNA polymerases/génétique , DNA-directed RNA polymerases/métabolisme , Type II site-specific deoxyribonuclease/métabolisme , Escherichia coli/génétique , Escherichia coli/métabolisme , Locus génétiques , Banque génomique , Humains , Mutation de type INDEL , Cellules K562 , Banque de peptides , Plasmides/composition chimique , Plasmides/métabolisme , Transformation génétique , Protéines virales/génétique , Protéines virales/métabolisme , Nucléases à doigts de zinc/métabolisme
5.
Blood ; 127(20): 2416-26, 2016 05 19.
Article de Anglais | MEDLINE | ID: mdl-26980728

RÉSUMÉ

Genome editing in hematopoietic stem and progenitor cells (HSPCs) is a promising novel technology for the treatment of many human diseases. Here, we evaluated whether the disruption of the C-C chemokine receptor 5 (CCR5) locus in pigtailed macaque HSPCs by zinc finger nucleases (ZFNs) was feasible. We show that macaque-specific CCR5 ZFNs efficiently induce CCR5 disruption at levels of up to 64% ex vivo, 40% in vivo early posttransplant, and 3% to 5% in long-term repopulating cells over 6 months following HSPC transplant. These genome-edited HSPCs support multilineage engraftment and generate progeny capable of trafficking to secondary tissues including the gut. Using deep sequencing technology, we show that these ZFNs are highly specific for the CCR5 locus in primary cells. Further, we have adapted our clonal tracking methodology to follow individual CCR5 mutant cells over time in vivo, reinforcing that CCR5 gene-edited HSPCs are capable of long-term engraftment. Together, these data demonstrate that genome-edited HSPCs engraft, and contribute to multilineage repopulation after autologous transplantation in a clinically relevant large animal model, an important step toward the development of stem cell-based genome-editing therapies for HIV and potentially other diseases as well.


Sujet(s)
Transplantation de moelle osseuse , Lignage cellulaire , Édition de gène , Transplantation de cellules souches hématopoïétiques , Macaca nemestrina/génétique , Récepteurs CCR5/génétique , Séquence d'acides aminés , Animaux , Lignée cellulaire , Électroporation , Études de faisabilité , Techniques de knock-down de gènes , Survie du greffon , Cellules souches hématopoïétiques/cytologie , Cellules souches hématopoïétiques/métabolisme , Données de séquences moléculaires , Mutation , Réaction de polymérisation en chaîne/méthodes , ARN messager/génétique , Récepteurs CCR5/déficit , Analyse de séquence d'ADN , Conditionnement pour greffe , Transplantation autologue , Irradiation corporelle totale , Doigts de zinc
6.
Nat Biotechnol ; 34(4): 424-9, 2016 Apr.
Article de Anglais | MEDLINE | ID: mdl-26950749

RÉSUMÉ

Gene therapy with genetically modified human CD34(+) hematopoietic stem and progenitor cells (HSPCs) may be safer using targeted integration (TI) of transgenes into a genomic 'safe harbor' site rather than random viral integration. We demonstrate that temporally optimized delivery of zinc finger nuclease mRNA via electroporation and adeno-associated virus (AAV) 6 delivery of donor constructs in human HSPCs approaches clinically relevant levels of TI into the AAVS1 safe harbor locus. Up to 58% Venus(+) HSPCs with 6-16% human cell marking were observed following engraftment into mice. In HSPCs from patients with X-linked chronic granulomatous disease (X-CGD), caused by mutations in the gp91phox subunit of the NADPH oxidase, TI of a gp91phox transgene into AAVS1 resulted in ∼15% gp91phox expression and increased NADPH oxidase activity in ex vivo-derived neutrophils. In mice transplanted with corrected HSPCs, 4-11% of human cells in the bone marrow expressed gp91phox. This method for TI into AAVS1 may be broadly applicable to correction of other monogenic diseases.


Sujet(s)
Antigènes CD34/composition chimique , Thérapie génétique/méthodes , Granulomatose septique chronique/thérapie , Transplantation de cellules souches hématopoïétiques/méthodes , Cellules souches hématopoïétiques/cytologie , Animaux , Cellules cultivées , Humains , Souris , Souris transgéniques
7.
Nucleic Acids Res ; 44(3): e30, 2016 Feb 18.
Article de Anglais | MEDLINE | ID: mdl-26527725

RÉSUMÉ

The adoptive transfer of engineered T cells for the treatment of cancer, autoimmunity, and infectious disease is a rapidly growing field that has shown great promise in recent clinical trials. Nuclease-driven genome editing provides a method in which to precisely target genetic changes to further enhance T cell function in vivo. We describe the development of a highly efficient method to genome edit both primary human CD8 and CD4 T cells by homology-directed repair at a pre-defined site of the genome. Two different homology donor templates were evaluated, representing both minor gene editing events (restriction site insertion) to mimic gene correction, or the more significant insertion of a larger gene cassette. By combining zinc finger nuclease mRNA delivery with AAV6 delivery of a homologous donor we could gene correct 41% of CCR5 or 55% of PPP1R12C (AAVS1) alleles in CD8(+) T cells and gene targeting of a GFP transgene cassette in >40% of CD8(+) and CD4(+) T cells at both the CCR5 and AAVS1 safe harbor locus, potentially providing a robust genome editing tool for T cell-based immunotherapy.


Sujet(s)
Lymphocytes T CD4+/métabolisme , Lymphocytes T CD8+/métabolisme , Dependovirus/génétique , Endonucleases/génétique , Vecteurs génétiques , Génome humain , ARN messager/génétique , Transfection , Doigts de zinc , Lymphocytes T CD4+/enzymologie , Lymphocytes T CD8+/enzymologie , Humains
8.
Nat Biotechnol ; 33(12): 1256-1263, 2015 Dec.
Article de Anglais | MEDLINE | ID: mdl-26551060

RÉSUMÉ

Genome editing with targeted nucleases and DNA donor templates homologous to the break site has proven challenging in human hematopoietic stem and progenitor cells (HSPCs), and particularly in the most primitive, long-term repopulating cell population. Here we report that combining electroporation of zinc finger nuclease (ZFN) mRNA with donor template delivery by adeno-associated virus (AAV) serotype 6 vectors directs efficient genome editing in HSPCs, achieving site-specific insertion of a GFP cassette at the CCR5 and AAVS1 loci in mobilized peripheral blood CD34+ HSPCs at mean frequencies of 17% and 26%, respectively, and in fetal liver HSPCs at 19% and 43%, respectively. Notably, this approach modified the CD34+CD133+CD90+ cell population, a minor component of CD34+ cells that contains long-term repopulating hematopoietic stem cells (HSCs). Genome-edited HSPCs also engrafted in immune-deficient mice long-term, confirming that HSCs are targeted by this approach. Our results provide a strategy for more robust application of genome-editing technologies in HSPCs.

9.
Nat Methods ; 12(5): 465-71, 2015 May.
Article de Anglais | MEDLINE | ID: mdl-25799440

RÉSUMÉ

Transcription activator-like effector (TALE) proteins have gained broad appeal as a platform for targeted DNA recognition, largely owing to their simple rules for design. These rules relate the base specified by a single TALE repeat to the identity of two key residues (the repeat variable diresidue, or RVD) and enable design for new sequence targets via modular shuffling of these units. A key limitation of these rules is that their simplicity precludes options for improving designs that are insufficiently active or specific. Here we address this limitation by developing an expanded set of RVDs and applying them to improve the performance of previously described TALEs. As an extreme example, total conversion of a TALE nuclease to new RVDs substantially reduced off-target cleavage in cellular studies. By providing new RVDs and design strategies, these studies establish options for developing improved TALEs for broader application across medicine and biotechnology.


Sujet(s)
Régulation de l'expression des gènes/physiologie , Génome , Édition des ARN/physiologie , Facteurs de transcription/métabolisme , Animaux , Séquence nucléotidique , ADN/génétique , Test ELISA , Marqueurs génétiques , Facteurs de transcription/génétique
10.
Nature ; 500(7462): 296-300, 2013 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-23863942

RÉSUMÉ

Down's syndrome is a common disorder with enormous medical and social costs, caused by trisomy for chromosome 21. We tested the concept that gene imbalance across an extra chromosome can be de facto corrected by manipulating a single gene, XIST (the X-inactivation gene). Using genome editing with zinc finger nucleases, we inserted a large, inducible XIST transgene into the DYRK1A locus on chromosome 21, in Down's syndrome pluripotent stem cells. The XIST non-coding RNA coats chromosome 21 and triggers stable heterochromatin modifications, chromosome-wide transcriptional silencing and DNA methylation to form a 'chromosome 21 Barr body'. This provides a model to study human chromosome inactivation and creates a system to investigate genomic expression changes and cellular pathologies of trisomy 21, free from genetic and epigenetic noise. Notably, deficits in proliferation and neural rosette formation are rapidly reversed upon silencing one chromosome 21. Successful trisomy silencing in vitro also surmounts the major first step towards potential development of 'chromosome therapy'.


Sujet(s)
Chromosomes humains de la paire 21/génétique , Compensation de dosage génétique , Syndrome de Down/génétique , ARN long non codant/métabolisme , Animaux , Lignée cellulaire , Prolifération cellulaire , Méthylation de l'ADN , Syndrome de Down/thérapie , Extinction de l'expression des gènes , Humains , Cellules souches pluripotentes induites , Mâle , Souris , Mutagenèse par insertion , Neurogenèse , ARN long non codant/génétique , Chromatine sexuelle/génétique , Inactivation du chromosome X/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...