Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-37862537

RÉSUMÉ

We present a laser-driven, bright, and broadband (50 to 1500 eV) soft-x-ray plasma source with <10 ps pulse duration. This source is employed in two complementary, laboratory-scale beamlines for time-resolved, magnetic resonant scattering and spectroscopy, as well as near-edge x-ray absorption fine-structure (NEXAFS) spectroscopy. In both beamlines, dedicated reflection zone plates (RZPs) are used as single optical elements to capture, disperse, and focus the soft x rays, reaching resolving powers up to E/ΔE > 1000, with hybrid RZPs at the NEXAFS beamline retaining a consistent E/ΔE > 500 throughout the full spectral range, allowing for time-efficient data acquisition. We demonstrate the versatility and performance of our setup by a selection of soft-x-ray spectroscopy and scattering experiments, which so far have not been possible on a laboratory scale. Excellent data quality, combined with experimental flexibility, renders our approach a true alternative to large-scale facilities, such as synchrotron-radiation sources and free-electron lasers.

2.
Proc Natl Acad Sci U S A ; 119(40): e2207766119, 2022 Oct 04.
Article de Anglais | MEDLINE | ID: mdl-36161921

RÉSUMÉ

We report on the nonlinear optical signatures of quantum phase transitions in the high-temperature superconductor YBCO, observed through high harmonic generation. While the linear optical response of the material is largely unchanged when cooling across the phase transitions, the nonlinear optical response sensitively imprints two critical points, one at the critical temperature of the cuprate with the exponential growth of the surface harmonic yield in the superconducting phase and another critical point, which marks the transition from strange metal to pseudogap phase. To reveal the underlying microscopic quantum dynamics, a strong-field quasi-Hubbard model was developed, which describes the measured optical response dependent on the formation of Cooper pairs. Further, the theory provides insight into the carrier scattering dynamics and allows us to differentiate between the superconducting, pseudogap, and strange metal phases. The direct connection between nonlinear optical response and microscopic dynamics provides a powerful methodology to study quantum phase transitions in correlated materials. Further implications are light wave control over intricate quantum phases, light-matter hybrids, and application for optical quantum computing.

3.
Nat Commun ; 9(1): 5190, 2018 12 05.
Article de Anglais | MEDLINE | ID: mdl-30518844

RÉSUMÉ

Graphene has emerged as a promising material for optoelectronics due to its potential for ultrafast and broad-band photodetection. The photoresponse of graphene junctions is characterized by two competing photocurrent generation mechanisms: a conventional photovoltaic effect and a more dominant hot-carrier-assisted photothermoelectric (PTE) effect. The PTE effect is understood to rely on variations in the Seebeck coefficient through the graphene doping profile. A second PTE effect can occur across a homogeneous graphene channel in the presence of an electronic temperature gradient. Here, we study the latter effect facilitated by strongly localised plasmonic heating of graphene carriers in the presence of nanostructured electrical contacts resulting in electronic temperatures of the order of 2000 K. At certain conditions, the plasmon-induced PTE photocurrent contribution can be isolated. In this regime, the device effectively operates as a sensitive electronic thermometer and as such represents an enabling technology for development of hot carrier based plasmonic devices.

4.
Nano Lett ; 16(8): 5278-85, 2016 08 10.
Article de Anglais | MEDLINE | ID: mdl-27433989

RÉSUMÉ

Nonlinear phenomena are central to modern photonics but, being inherently weak, typically require gradual accumulation over several millimeters. For example, second harmonic generation (SHG) is typically achieved in thick transparent nonlinear crystals by phase-matching energy exchange between light at initial, ω, and final, 2ω, frequencies. Recently, metamaterials imbued with artificial nonlinearity from their constituent nanoantennas have generated excitement by opening the possibility of wavelength-scale nonlinear optics. However, the selection rules of SHG typically prevent dipole emission from simple nanoantennas, which has led to much discussion concerning the best geometries, for example, those breaking centro-symmetry or incorporating resonances at multiple harmonics. In this work, we explore the use of both nanoantenna symmetry and multiple harmonics to control the strength, polarization and radiation pattern of SHG from a variety of antenna configurations incorporating simple resonant elements tuned to light at both ω and 2ω. We use a microscopic description of the scattering strength and phases of these constituent particles, determined by their relative positions, to accurately predict the SHG radiation observed in our experiments. We find that the 2ω particles radiate dipolar SHG by near-field coupling to the ω particle, which radiates SHG as a quadrupole. Consequently, strong linearly polarized dipolar SHG is only possible for noncentro-symmetric antennas that also minimize interference between their dipolar and quadrupolar responses. Metamaterials with such intra-antenna phase and polarization control could enable compact nonlinear photonic nanotechnologies.

5.
Nano Lett ; 16(4): 2878-84, 2016 Apr 13.
Article de Anglais | MEDLINE | ID: mdl-27007261

RÉSUMÉ

Coherent light sources confining the light below the vacuum wavelength barrier will drive future concepts of nanosensing, nanospectroscopy, and photonic circuits. Here, we directly image the angular emission of such a light source based on single semiconductor nanowire lasers. It is confirmed that the lasing switches from the fundamental mode in a thin ZnO nanowire to an admixture of several transverse modes in thicker nanowires approximately at the multimode cutoff. The mode competition with higher order modes substantially slows down the laser dynamics. We show that efficient photonic mode filtering in tapered nanowires selects the desired fundamental mode for lasing with improved performance including power, efficiency, and directionality important for an optimal coupling between adjacent nanophotonic waveguides.

6.
Nano Lett ; 16(2): 1410-4, 2016 Feb 10.
Article de Anglais | MEDLINE | ID: mdl-26771836

RÉSUMÉ

We present an experimental demonstration of a new class of hybrid gap plasmon waveguides on the silicon-on-insulator (SOI) platform. Created by the hybridization of the plasmonic mode of a gap in a thin metal sheet and the transverse-electric (TE) photonic mode of an SOI slab, this waveguide is designed for efficient adiabatic nanofocusing simply by varying the gap width. For gap widths greater than 100 nm, the mode is primarily photonic in character and propagation lengths can be many tens of micrometers. For gap widths below 100 nm, the mode becomes plasmonic in character with field confinement predominantly within the gap region and with propagation lengths of a few microns. We estimate the electric field intensity enhancement in hybrid gap plasmon waveguide tapers at 1550 nm by three-photon absorption of selectively deposited CdSe/ZnS quantum dots within the gap. Here, we show electric field intensity enhancements of up to 167 ± 26 for a 24 nm gap, proving the viability of low loss adiabatic nanofocusing on a commercially relevant photonics platform.


Sujet(s)
Métaux/composition chimique , Silicium/composition chimique , Conductivité électrique , Conception d'appareillage , Nanotechnologie , Optique et photonique , Résonance plasmonique de surface
7.
Nano Lett ; 15(7): 4637-43, 2015 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-26086355

RÉSUMÉ

Semiconductor nanowire lasers operate at ultrafast timescales; here we report their temporal dynamics, including laser onset time and pulse width, using a double-pump approach. Wide bandgap gallium nitride (GaN), zinc oxide (ZnO), and cadmium sulfide (CdS) nanowires reveal laser onset times of a few picoseconds, driven by carrier thermalization within the optically excited semiconductor. Strong carrier-phonon coupling in ZnO leads to the fastest laser onset time of ∼1 ps in comparison to CdS and GaN exhibiting values of ∼2.5 and ∼3.5 ps, respectively. These values are constant between nanowires of different sizes implying independence from any optical influences. However, we demonstrate that the lasing onset times vary with excitation wavelength relative to the semiconductor band gap. Meanwhile, the laser pulse widths are dependent on the optical system. While the fastest ultrashort pulses are attained using the thinnest possible nanowires, a sudden change in pulse width from ∼5 to ∼15 ps occurs at a critical nanowire diameter. We attribute this to the transition from single to multimode waveguiding, as it is accompanied by a change in laser polarization.

8.
Nano Lett ; 15(5): 3458-64, 2015 May 13.
Article de Anglais | MEDLINE | ID: mdl-25915785

RÉSUMÉ

Hybrid plasmonic metal-graphene systems are emerging as a class of optical metamaterials that facilitate strong light-matter interactions and are of potential importance for hot carrier graphene-based light harvesting and active plasmonic applications. Here we use femtosecond pump-probe measurements to study the near-field interaction between graphene and plasmonic gold nanodisk resonators. By selectively probing the plasmon-induced hot carrier dynamics in samples with tailored graphene-gold interfaces, we show that plasmon-induced hot carrier generation in the graphene is dominated by direct photoexcitation with minimal contribution from charge transfer from the gold. The strong near-field interaction manifests as an unexpected and long-lived extrinsic optical anisotropy. The observations are explained by the action of highly localized plasmon-induced hot carriers in the graphene on the subresonant polarizability of the disk resonator. Because localized hot carrier generation in graphene can be exploited to drive electrical currents, plasmonic metal-graphene nanostructures present opportunities for novel hot carrier device concepts.

9.
Opt Lett ; 39(15): 4356-9, 2014 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-25078176

RÉSUMÉ

We introduce plasmonic waveguides based on metal loading of silicon-on-insulator (SOI) substrates. Here slab waveguide modes hybridize with the plasmonic modes of either a metal nanowire or a slot in a metal film. By tapering a single dimension of either structure, the resulting hybrid mode can be converted from photon-like to plasmon-like, allowing up to millimeter-range transport and rapid nanoscale focusing down to mode areas ∼λ2/400. Metal loading is achievable with a single lithography step directly on SOI without the need for etching and, thus, opens practical possibilities for silicon nanoplasmonics.

10.
Nano Lett ; 12(9): 4997-5002, 2012 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-22916834

RÉSUMÉ

We report the experimental realization of efficient tunable nanosources of second harmonic light with individual multiresonant log-periodic optical antennas. By designing the nanoantenna with a bandwidth of several octaves, simultaneous enhancement of fundamental and harmonic fields is observed over a broad range of frequencies, leading to a high second harmonic conversion efficiency, together with an effective second order susceptibility within the range of values provided by widespread inorganic crystals. Moreover, the geometrical configuration of the nanoantenna makes the generated second harmonic signal independent from the polarization of the fundamental excitation. These results open new possibilities for the development of efficient integrated nonlinear nanodevices with high frequency tunability.


Sujet(s)
Cristallisation/méthodes , Éclairage/instrumentation , Nanostructures/composition chimique , Nanostructures/ultrastructure , Nanotechnologie/instrumentation , Résonance plasmonique de surface/instrumentation , Transducteurs , Conception d'appareillage , Analyse de panne d'appareillage , Lumière , Test de matériaux , Taille de particule , Diffusion de rayonnements
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...