Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 91
Filtrer
1.
Mol Ther Oncol ; 32(3): 200836, 2024 Sep 19.
Article de Anglais | MEDLINE | ID: mdl-39050990

RÉSUMÉ

The successful trajectory of liposome-encapsulated doxorubicin (e.g., Doxil, which has been approved by the U.S. Food and Drug Administration) as an anticancer nanodrug in clinical applications is contradicted by in vitro cell viability data that highlight its reduced efficacy in promoting cell death compared with non-encapsulated doxorubicin. No reports to date have provided a mechanistic explanation for this apparently discordant evidence. Taking advantage of doxorubicin intrinsic fluorescence and time-resolved optical microscopy, we analyze the uptake and intracellular processing of liposome-encapsulated doxorubicin (L-DOX) in several in vitro cellular models. Cell entry of L-DOX was found to lead to a rapid (seconds to minutes), energy- and temperature-independent release of crystallized doxorubicin nanorods into the cell cytoplasm, which then disassemble into a pool of fibril-shaped derivatives capable of crossing the cellular membrane while simultaneously releasing active drug monomers. Thus, a steady state is rapidly established in which the continuous supply of crystal nanorods from incoming liposomes is counteracted by a concentration-guided efflux in the extracellular medium of fibril-shaped derivatives and active drug monomers. These results demonstrate that liposome-mediated delivery is constitutively less efficient than isolated drug in establishing favorable conditions for drug retention in the cell. In addition to explaining previous contradictory evidence, present results impose careful rethinking of the synthetic identity of encapsulated anticancer drugs.

2.
Medicina (Kaunas) ; 60(7)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-39064511

RÉSUMÉ

Mitral regurgitation (MR) is a broadly diffuse valvular heart disease (VHD) with a significant impact on the healthcare system and patient prognosis. Transcatheter mitral valve interventions (TMVI) are now well-established techniques included in the therapeutic armamentarium for managing patients with mitral regurgitation, either primary or functional MR. Even if the guidelines give indications regarding the correct management of this VHD, the wide heterogeneity of patients' clinical backgrounds and valvular and heart anatomies make each patient a unique case, in which the appropriate device's selection requires a multimodal imaging evaluation and a multidisciplinary discussion. Proper pre-procedural evaluation plays a pivotal role in judging the feasibility of TMVI, while a cooperative work between imagers and interventionalist is also crucial for procedural success. This manuscript aims to provide an exhaustive overview of the main parameters that need to be evaluated for appropriate device selection, pre-procedural planning, intra-procedural guidance and post-operative assessment in the setting of TMVI. In addition, it tries to give some insights about future perspectives for structural cardiovascular imaging.


Sujet(s)
Cathétérisme cardiaque , Implantation de valve prothétique cardiaque , Insuffisance mitrale , Valve atrioventriculaire gauche , Imagerie multimodale , Humains , Insuffisance mitrale/chirurgie , Insuffisance mitrale/imagerie diagnostique , Imagerie multimodale/méthodes , Implantation de valve prothétique cardiaque/méthodes , Implantation de valve prothétique cardiaque/instrumentation , Implantation de valve prothétique cardiaque/normes , Valve atrioventriculaire gauche/chirurgie , Valve atrioventriculaire gauche/imagerie diagnostique , Cathétérisme cardiaque/méthodes , Cathétérisme cardiaque/instrumentation
3.
Front Neurosci ; 18: 1375299, 2024.
Article de Anglais | MEDLINE | ID: mdl-38911600

RÉSUMÉ

Introduction: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare incurable neurodegenerative disease caused by mutations in the SACS gene, which codes for sacsin, a large protein involved in protein homeostasis, mitochondrial function, cytoskeletal dynamics, autophagy, cell adhesion and vesicle trafficking. However, the pathogenic mechanisms underlying sacsin dysfunction are still largely uncharacterized, and so attempts to develop therapies are still in the early stages. Methods: To achieve further understanding of how processes are altered by loss of sacsin, we used untargeted proteomics to compare protein profiles in ARSACS fibroblasts versus controls. Results: Our analyses confirmed the involvement of known biological pathways and also implicated calcium and lipid homeostasis in ARSACS skin fibroblasts, a finding further verified in SH-SY5Y SACS -/- cells. Validation through mass spectrometry-based analysis and comparative quantification of lipids by LC-MS in fibroblasts revealed increased levels of ceramides coupled with a reduction of diacylglycerols. Discussion: In addition to confirming aberrant Ca2+ homeostasis in ARSACS, this study described abnormal lipid levels associated with loss of sacsin.

4.
Eur Heart J Cardiovasc Imaging ; 25(8): 1089-1098, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-38445505

RÉSUMÉ

AIMS: To date, no studies have investigated the association between lipid species and coronary plaque changes over time, quantitatively assessed by serial imaging. We aimed to prospectively determine the association between lipid species quantified by a plasma lipidomic analysis and coronary plaque changes according to composition assessed by a quantitative serial analysis of coronary computed tomography angiography (CTA). METHODS AND RESULTS: Patients with suspected coronary artery disease (CAD) undergoing baseline coronary CTA were prospectively enrolled by seven EU centres in the SMARTool study and submitted to clinical, molecular, and coronary CTA re-evaluation at follow-up (an inter-scan period of 6.39 ± 1.17 years). Out of 202 patients who were analysed in the SMARTool main clinical study, a lipidomic analysis was performed in 154 patients before the baseline coronary CTA, and this group was included in the present study. A quantitative CTA analysis was performed by using a separate core laboratory blinded from clinical data. In the univariable analysis, it was found that no lipid species were significantly associated with annual total and calcified plaque changes. After adjusting for clinical variables at baseline and statin use, it was found that three lipid species were significantly associated with non-calcified plaque progression. In detail, cholesteryl ester(20:3), sphingomyelin (SM)(40:3), and SM(41:1) were found to be positively related to non-calcified plaque progression (Bonferroni-adjusted P-values = 0.005, 0.016, and 0.004, respectively). CONCLUSION: The current study showed an independent relationship between specific lipid species determined by a plasma lipidomic analysis and non-calcified coronary plaque progression assessed by a serial, quantitative coronary CTA analysis.


Sujet(s)
Angiographie par tomodensitométrie , Coronarographie , Maladie des artères coronaires , Lipidomique , Plaque d'athérosclérose , Sujet âgé , Femelle , Humains , Mâle , Adulte d'âge moyen , Angiographie par tomodensitométrie/méthodes , Maladie des artères coronaires/imagerie diagnostique , Maladie des artères coronaires/sang , Évolution de la maladie , Lipides/sang , Plaque d'athérosclérose/imagerie diagnostique , Plaque d'athérosclérose/sang , Études prospectives , Indice de gravité de la maladie
5.
J Clin Med ; 13(2)2024 Jan 18.
Article de Anglais | MEDLINE | ID: mdl-38256678

RÉSUMÉ

BACKGROUND: Primary sclerosing cholangitis (PSC) is a rare chronic inflammatory liver disease characterized by biliary strictures and cholestasis. Due to the lack of effective serological indicators for diagnosis and prognosis, in the present study, we examined the potentiality of the saliva proteome to comprehensively screen for novel biomarkers. METHODS: Saliva samples of PSC patients and healthy controls were processed and subsequently analyzed using a liquid chromatography-tandem mass spectrometry technique. A bioinformatic approach was applied to detect the differentially expressed proteins, their related biological functions and pathways, and the correlation with the clinical evidence in order to identify a possible marker for the PSC group. RESULTS: We identified 25 differentially expressed proteins in PSC patients when compared to the healthy control group. Among them, eight proteins exhibited area under the curve values up to 0.800, suggesting these saliva proteins as good discriminators between the two groups. Multiple positive correlations were also identified between the dysregulated salivary proteins and increased serum alkaline phosphatase levels and the presence of ulcerative colitis. Pathway analysis revealed significant enrichments in the immune system, neutrophil degranulation, and in the interleukine-17 signaling pathway. CONCLUSION: We demonstrated the potentiality of saliva as a useful biofluid to obtain a fingerprint of the pathology, suggesting disulfide-isomerase A3 and peroxiredoxin-5 as the better discriminating proteins in PSC patients. Hence, analysis of saliva proteins could become, in future, a useful tool in the screening of patients with suspected PSC.

6.
Sci Rep ; 13(1): 19926, 2023 11 15.
Article de Anglais | MEDLINE | ID: mdl-37968295

RÉSUMÉ

Early diagnosis is one of the most important factors in determining the prognosis in cancer. Sensitive detection and quantification of tumour-specific biomarkers have the potential to improve significantly our diagnostic capability. Here, we introduce a triggerable aptamer-based nanostructure based on an oligonucleotide/gold nanoparticle architecture that selectively disassembles in the presence of the biomarker of interest; its optimization is based also on in-silico determination of the aptamer nucleotides interactions with the protein of interest. We demonstrate this scheme for the case of Prostate Specific Membrane Antigen (PSMA) and PSMA derived from PSMA-positive exosomes. We tested the disassembly of the system by diameter and count rate measurements in dynamic light scattering, and by inspection of its plasmon resonance shift, upon addition of PSMA, finding appreciable differences down to the sub-picomolar range; this points towards the possibility that this approach may lead to sensors competitive with diagnostic biochemical assays that require enzymatic amplification. More generally, this scheme has the potential to be applied to a broad range of pathologies with specific identified biomarkers.


Sujet(s)
Aptamères nucléotidiques , Nanoparticules métalliques , Tumeurs de la prostate , Mâle , Humains , Or/composition chimique , Tumeurs de la prostate/anatomopathologie , Nanoparticules métalliques/composition chimique , Marqueurs biologiques tumoraux , Aptamères nucléotidiques/composition chimique
7.
ACS Appl Bio Mater ; 6(10): 4277-4289, 2023 10 16.
Article de Anglais | MEDLINE | ID: mdl-37699572

RÉSUMÉ

Onivyde was approved by the Food and Drug Administration (FDA) in 2015 for the treatment of solid tumors, including metastatic pancreatic cancer. It is designed to encapsulate irinotecan at high concentration, increase its blood-circulation lifetime, and deliver it to cells where it is enzymatically converted into SN-38, a metabolite with 100- to 1000-fold higher anticancer activity. Despite a rewarding clinical path, little is known about the physical state of encapsulated irinotecan within Onivyde and how this synthetic identity changes throughout the process from manufacturing to intracellular processing. Herein, we exploit irinotecan intrinsic fluorescence and fluorescence lifetime imaging microscopy (FLIM) to selectively probe the supramolecular organization of the drug. FLIM analysis on the manufacturer's formulation reveals the presence of two coexisting physical states within Onivyde liposomes: (i) gelated/precipitated irinotecan and (ii) liposome-membrane-associated irinotecan, the presence of which is not inferable from the manufacturer's indications. FLIM in combination with high-performance liquid chromatography (HPLC) and a membrane-impermeable dynamic quencher of irinotecan reveals rapid (within minutes) and complete chemical dissolution of the gelated/precipitated phase upon Onivyde dilution in standard cell-culturing medium with extensive leakage of the prodrug from liposomes. Indeed, confocal imaging and cell-proliferation assays show that encapsulated and nonencapsulated irinotecan formulations are similar in terms of cell-uptake mechanism and cell-division inhibition. Finally, 2-channel FLIM analysis discriminates the signature of irinotecan from that of its red-shifted SN-38 metabolite, demonstrating the appearance of the latter as a result of Onivyde intracellular processing. The findings presented in this study offer fresh insights into the synthetic identity of Onivyde and its transformation from production to in vitro administration. Moreover, these results serve as another validation of the effectiveness of FLIM analysis in elucidating the supramolecular organization of encapsulated fluorescent drugs. This research underscores the importance of leveraging advanced imaging techniques to deepen our understanding of drug formulations and optimize their performance in delivery applications.


Sujet(s)
Liposomes , Tumeurs du pancréas , États-Unis , Humains , Irinotécan/composition chimique , Irinotécan/usage thérapeutique , Liposomes/composition chimique , Fluorescence , Tumeurs du pancréas/traitement médicamenteux
8.
Front Cardiovasc Med ; 10: 1187735, 2023.
Article de Anglais | MEDLINE | ID: mdl-37576108

RÉSUMÉ

Obesity is a heterogeneous disease that affects almost one-third of the global population. A clear association has been established between obesity and cardiovascular disease (CVD). However, CVD risk is known to be related more to the local distribution of fat than to total body fat. Visceral adipose tissue (VAT) in particular has a high impact on CVD risk. This manuscript reviews the role of VAT in residual CV risk and the available therapeutic strategies for decreasing residual CV risk related to VAT accumulation. Among the many pathways involved in residual CV risk, obesity and particularly VAT accumulation play a major role by generating low-grade systemic inflammation, which in turn has a high prognostic impact on all-cause mortality and myocardial infarction. In recent years, many therapeutic approaches have been developed to reduce body weight. Orlistat was shown to reduce both weight and VAT but has low tolerability and many drug-drug interactions. Naltrexone-bupropion combination lowers body weight but has frequent side effects and is contraindicated in patients with uncontrolled hypertension. Liraglutide and semaglutide, glucagon-like peptide 1 (GLP-1) agonists, are the latest drugs approved for the treatment of obesity, and both have been shown to induce significant body weight loss. Liraglutide, semaglutide and other GLP-1 agonists also showed a positive effect on CV outcomes in diabetic patients. In addition, liraglutide showed to specifically reduce VAT and inflammatory biomarkers in obese patients without diabetes. GLP-1 agonists are promising compounds to limit inflammation in human visceral adipocytes.

9.
Int J Mol Sci ; 24(13)2023 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-37445659

RÉSUMÉ

Curcumin is a natural polyphenol that exhibits a variety of beneficial effects on health, including anti-inflammatory, antioxidant, and hepato-protective properties. Due to its poor water solubility and membrane permeability, in the present study, we prepared and characterized a water-stable, freely dispersible nanoformulation of curcumin. Although the potential of curcumin nanoformulations in the hepatic field has been studied, there are no investigations on their effect in fibrotic pathological conditions involving cholangiocytes. Exploiting an in vitro model of transforming growth factor-ß (TGF-ß)-stimulated cholangiocytes, we applied the Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS)-based quantitative proteomic approaches to study the proteome modulation induced by curcumin nanoformulation. Our results confirmed the well-documented anti-inflammatory properties of this nutraceutic, highlighting the induction of programmed cell death as a mechanism to counteract the cellular damages induced by TGF-ß. Moreover, curcumin nanoformulation positively influenced the expression of several proteins involved in TGF-ß-mediated fibrosis. Given the crucial importance of deregulated cholangiocyte functions during cholangiopathies, our results provide the basis for a better understanding of the mechanisms associated with this pathology and could represent a rationale for the development of more targeted therapies.


Sujet(s)
Curcumine , Facteur de croissance transformant bêta , Humains , Facteur de croissance transformant bêta/métabolisme , Curcumine/pharmacologie , Protéomique , Foie/métabolisme , Fibrose , Anti-inflammatoires
10.
Heart Fail Rev ; 28(6): 1325-1334, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37493869

RÉSUMÉ

Coronary artery disease (CAD) is the most common cause of heart failure with reduced ejection fraction (HFrEF). Advances and innovations in medical therapy have been shown to play a crucial role in improving the prognosis of patients with CAD and HFrEF; however, mortality rate in these patients remains high, and the role of surgical and/or percutaneous revascularization strategy is still debated. The Surgical Treatment for Ischemic Heart Failure (STICH) trial and the Revascularization for Ischemic Ventricular Dysfunction (REVIVED) trial have attempted to provide an answer to this issue. Nevertheless, the results of these two trials have generated further uncertainties. Their findings do not provide a definitive answer about the ideal clinical phenotype for surgical or percutaneous coronary revascularization and dispute the historical dogma on myocardial viability and the theory of myocardial hibernation, raising new questions about the proper selection of patients who are candidates for coronary revascularization. The aim of this review is to provide an overview on the actual available evidence of coronary artery revascularization in patients with CAD and left ventricular dysfunction and to suggest new insights on the proper selection and management strategies in this high-risk clinical setting.


Sujet(s)
Maladie des artères coronaires , Défaillance cardiaque , Dysfonction ventriculaire gauche , Humains , Pontage aortocoronarien/méthodes , Défaillance cardiaque/chirurgie , Résultat thérapeutique , Débit systolique , Maladie des artères coronaires/complications , Maladie des artères coronaires/chirurgie , Dysfonction ventriculaire gauche/chirurgie
11.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166793, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-37336366

RÉSUMÉ

The Apolipoprotein E (ApoE) has been known to regulate cholesterol and ß-amyloid (Aß) production, redistribution, and elimination, in the central nervous system (CNS). The ApoE ε4 polymorphic variant leads to impaired brain cholesterol homeostasis and amyloidogenic pathway, thus representing the major risk factor for Alzheimer's Disease (AD). Currently, less is known about the molecular mechanisms connecting ApoE ε4-related cholesterol metabolism and cholinergic system degeneration, one of the main AD pathological features. Herein, in vitro cholinergic neuron models were developed in order to study ApoE neuronal expression and investigate the possible interplay between cholesterol metabolism and cholinergic pathway impairment prompted by ε4 isoform. Particularly, alterations specifically occurring in ApoE ε4-carrying neurons (i.e. increased intracellular ApoE, amyloid precursor protein (APP) and Aß levels, elevated apoptosis, and reduced cell survival) were recapitulated. ApoE ε4 expression was found to increase intracellular cholesterol accumulation, by regulating the related gene expression, while reducing cholesterol precursor acetyl-CoA, which in turn fuels the acetylcholine (ACh) synthesis route. In parallel, although the ACh intracellular signalling was activated, as demonstrated by the boosted extracellular ACh as well as increased IP3 and Ca2+, the PKCε activation via membrane translocation was surprisingly suppressed, probably explained by the cholesterol overload in ApoE ε4 neuron-like cells. Consequently, the PKC-dependent anti-apoptotic and neuroprotective roles results impaired, reliably adding to other causes of cell death prompted by ApoE ε4. Overall, the obtained data open the way to further critical considerations of ApoE ε4-dependent cholesterol metabolism dysregulation in the alteration of cholinergic pathway, neurotoxicity, and neuronal death.


Sujet(s)
Maladie d'Alzheimer , Apolipoprotéine E4 , Humains , Acétylcholine , Maladie d'Alzheimer/métabolisme , Apolipoprotéine E4/génétique , Apolipoprotéines E/génétique , Cholestérol , Agents cholinergiques , Neurones/métabolisme , Protein kinase C-epsilon/métabolisme
12.
Int J Mol Sci ; 24(9)2023 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-37175805

RÉSUMÉ

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) were initially developed for the treatment of diabetes due to their antihyperglycemic activity. However, in the light of the most recent clinical studies, they are revolutionizing the approach to cardiovascular disease in patients with and without diabetes. We aimed to generate real-world data about the use of SGLT2i in patients with T2DM and coronary artery disease (CAD), focusing on their effectiveness in glycemic control, adherence, long-term efficacy, and safety outcomes. On the basis of the inclusion and exclusion criteria, 143 patients were enrolled. Patients were treated with canagliflozin (n = 33 patients; 23%), dapagliflozin (n = 52 patients, 36.4%), empagliflozin (n = 48 patients; 33.6%), or ertugliflozin (n = 10 patients; 7%) as monotherapy or in combination with other antidiabetic drugs. All patients performed a clinical visit, and their medical history, blood sampling, and anthropometric parameters were measured at discharge and at 1-year follow-up. The reduction in HbA1c % value at 12 months was significant (8.2 vs. 7.4; p < 0.001). Trends in body weight and body mass index also confirmed the positive effect of the treatment (p < 0.0001), as did the reduction in abdominal adiposity (expressed via waist circumference). At 1-year follow-up, 74.1% of patients were adherent to the treatment, and 81.1% were persistent to the treatment. A total of 27 patients (18.8%) had to discontinue treatment early due to drug intolerance caused by genitourinary infections (11.9%), the drub being permanently ineffective (HbA1c not at target or decreasing: 4.9%), or because of expressing. a desire not to continue (2%). No major drug-related adverse events (diabetic ketoacidosis, Fournier's gangrene, lower-limb amputations) occurred at follow-up, while MACE events occurred in 14 patients (9.8%). In real-world patients with T2DM and CAD, SGLT2i have been effective in long-term glycemic control and the improvement in anthropometric indices with good tolerance, high adherence, persistence to treatment, and no major adverse events at 1-year follow-up.


Sujet(s)
Maladie des artères coronaires , Diabète de type 2 , Inhibiteurs du cotransporteur sodium-glucose de type 2 , Humains , Inhibiteurs du cotransporteur sodium-glucose de type 2/effets indésirables , Diabète de type 2/complications , Diabète de type 2/traitement médicamenteux , Diabète de type 2/induit chimiquement , Maladie des artères coronaires/complications , Maladie des artères coronaires/traitement médicamenteux , Hémoglobine glyquée , Hypoglycémiants/effets indésirables , Glucose/usage thérapeutique , Sodium
13.
Sci Rep ; 13(1): 6025, 2023 04 13.
Article de Anglais | MEDLINE | ID: mdl-37055439

RÉSUMÉ

In proliferating multipotent retinal progenitors, transcription factors dynamics set the fate of postmitotic daughter cells, but postmitotic cell fate plasticity driven by extrinsic factors remains controversial. Transcriptome analysis reveals the concurrent expression by postmitotic rod precursors of genes critical for the Müller glia cell fate, which are rarely generated from terminally-dividing progenitors as a pair with rod precursors. By combining gene expression and functional characterisation in single cultured rod precursors, we identified a time-restricted window where increasing cell culture density switches off the expression of genes critical for Müller glial cells. Intriguingly, rod precursors in low cell culture density maintain the expression of genes of rod and glial cell fate and develop a mixed rod/Muller glial cells electrophysiological fingerprint, revealing rods derailment toward a hybrid rod-glial phenotype. The notion of cell culture density as an extrinsic factor critical for preventing rod-fated cells diversion toward a hybrid cell state may explain the occurrence of hybrid rod/MG cells in the adult retina and provide a strategy to improve engraftment yield in regenerative approaches to retinal degenerative disease by stabilising the fate of grafted rod precursors.


Sujet(s)
Névroglie , Rétine , Rétine/métabolisme , Névroglie/métabolisme , Différenciation cellulaire/génétique , Facteurs de transcription/métabolisme , Techniques de culture cellulaire
14.
Antioxidants (Basel) ; 12(4)2023 Mar 28.
Article de Anglais | MEDLINE | ID: mdl-37107204

RÉSUMÉ

A common feature of different types of diabetes is the high blood glucose levels, which are known to induce a series of metabolic alterations, leading to damaging events in different tissues. Among these alterations, both increased polyol pathway flux and oxidative stress are considered to play relevant roles in the response of different cells. In this work, the effect on a human lens epithelial cell line of stress conditions, consisting of exposure to either high glucose levels or to the lipid peroxidation product 4-hydroxy-2-nonenal, is reported. The occurrence of osmotic imbalance, alterations of glutathione levels, and expression of inflammatory markers was monitored. A common feature of the two stress conditions was the expression of COX-2, which, only in the case of hyperglycemic stress, occurred through NF-κB activation. In our cell model, aldose reductase activity, which is confirmed as the only activity responsible for the osmotic imbalance occurring in hyperglycemic conditions, seemed to have no role in controlling the onset of the inflammatory phenomena. However, it played a relevant role in cellular detoxification against lipid peroxidation products. These results, in confirming the multifactorial nature of the inflammatory phenomena, highlight the dual role of aldose reductase as having both damaging but also protecting activity, depending on stress conditions.

15.
Cell Metab ; 35(4): 633-650.e9, 2023 04 04.
Article de Anglais | MEDLINE | ID: mdl-36898381

RÉSUMÉ

The metabolic state represents a major hurdle for an effective adoptive T cell therapy (ACT). Indeed, specific lipids can harm CD8+ T cell (CTL) mitochondrial integrity, leading to defective antitumor responses. However, the extent to which lipids can affect the CTL functions and fate remains unexplored. Here, we show that linoleic acid (LA) is a major positive regulator of CTL activity by improving metabolic fitness, preventing exhaustion, and stimulating a memory-like phenotype with superior effector functions. We report that LA treatment enhances the formation of ER-mitochondria contacts (MERC), which in turn promotes calcium (Ca2+) signaling, mitochondrial energetics, and CTL effector functions. As a direct consequence, the antitumor potency of LA-instructed CD8 T cells is superior in vitro and in vivo. We thus propose LA treatment as an ACT potentiator in tumor therapy.


Sujet(s)
Lymphocytes T CD8+ , Acide linoléique , Acide linoléique/métabolisme , Transduction du signal
16.
Biomolecules ; 12(12)2022 11 29.
Article de Anglais | MEDLINE | ID: mdl-36551203

RÉSUMÉ

Reports concerning the beneficial effects of D-ribose administration in cardiovascular and muscle stressful conditions has led to suggestions for the use of ribose as an energizing food supplement for healthy people. However, this practice still presents too many critical issues, suggesting that caution is needed. In fact, there are many possible negative effects of this sugar that we believe are underestimated, if not neglected, by the literature supporting the presentation of the product to the market. Here, the risks deriving from the use of free ribose as ATP source, forcing ribose-5-phosphate to enter into the pentose phosphate pathway, is emphasized. On the basis of the remarkable glycation capacity of ribose, the easily predictable cytotoxic effect of the molecule is also highlighted.


Sujet(s)
Voie des pentoses phosphates , Ribose , Humains , Ribose/métabolisme
17.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article de Anglais | MEDLINE | ID: mdl-36293312

RÉSUMÉ

Carotid atherosclerosis represents a relevant healthcare problem, since unstable plaques are responsible for approximately 15% of neurologic events, namely transient ischemic attack and stroke. Although statins treatment has proven effective in reducing LDL-cholesterol and the onset of acute clinical events, a residual risk may persist suggesting the need for the detection of reliable molecular markers useful for the identification of patients at higher risk regardless of optimal medical therapy. In this regard, several lines of evidence show a relationship among specific biologically active plasma lipids, atherosclerosis, and acute clinical events. We performed a Selected Reaction Monitoring-based High Performance Liquid Chromatography-tandem Mass Spectrometry (SRM-based HPLC-MS/MS) analysis on plasma HDL, LDL, and VLDL fractions purified, by isopycnic salt gradient ultracentrifugation, from twenty-eight patients undergoing carotid endarterectomy, having either a "hard" or a "soft" plaque, with the aim of characterizing the specific lipidomic patterns associated with features of carotid plaque instability. One hundred and thirty lipid species encompassing different lipid (sub)classes were monitored. Supervised multivariate analysis showed that lipids belonging to phosphatidylethanolamine (PE), sphingomyelin (SM), and diacylglycerol (DG) classes mostly contribute to discrimination within each lipoprotein fraction according to the plaque typology. Differential analysis evidenced a significant dysregulation of LDL PE (38:6), SM (32:1), and SM (32:2) between the two groups of patients (adj. p-value threshold = 0.05 and log2FC ≥ |0.58|). Using this approach, some LDL-associated markers of plaque vulnerability have been identified, in line with the current knowledge of the key roles of these phospholipids in lipoprotein metabolism and cardiovascular disease. This proof-of-concept study reports promising results, showing that lipoprotein lipidomics may present a valuable approach for identifying new biomarkers of potential clinical relevance.


Sujet(s)
Athérosclérose , Inhibiteurs de l'hydroxyméthylglutaryl-CoA réductase , Plaque d'athérosclérose , Humains , Phosphatidyléthanolamine , Diglycéride , Sphingomyéline , Spectrométrie de masse en tandem , Lipoprotéines , Phospholipides , Cholestérol , Marqueurs biologiques , Lipoprotéines LDL
18.
Biology (Basel) ; 11(9)2022 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-36138801

RÉSUMÉ

The inhibition of aldose reductase is considered as a strategy to counteract the onset of both diabetic complications, upon the block of glucose conversion in the polyol pathway, and inflammation, upon the block of 3-glutathionyl-4-hydroxynonenal reduction. To ameliorate the outcome of aldose reductase inhibition, minimizing the interference with the detoxifying role of the enzyme when acting on toxic aldehydes, "differential inhibitors", i.e., molecules able to inhibit the enzyme depending on the substrate the enzyme is working on, has been proposed. Here we report the characterization of different catechin derivatives as aldose reductase differential inhibitors. The study, conducted through both a kinetic and a computational approach, highlights structural constraints of catechin derivatives relevant in order to affect aldose reductase activity. Gallocatechin gallate and catechin gallate emerged as differential inhibitors of aldose reductase able to preferentially affect aldoses and 3-glutathionyl-4-hydroxynonenal reduction with respect to 4-hydroxynonenal reduction. Moreover, the results highlight how, in the case of aldose reductase, a substrate may affect not only the model of action of an inhibitor, but also the degree of incompleteness of the inhibitory action, thus contributing to differential inhibitory phenomena.

19.
Front Oncol ; 12: 969812, 2022.
Article de Anglais | MEDLINE | ID: mdl-36132155

RÉSUMÉ

Background: Glioblastoma (GB) is the most severe form of brain cancer, with a 12-15 month median survival. Surgical resection, temozolomide (TMZ) treatment, and radiotherapy remain the primary therapeutic options for GB, and no new therapies have been introduced in recent years. This therapeutic standstill is primarily due to preclinical approaches that do not fully respect the complexity of GB cell biology and fail to test efficiently anti-cancer treatments. Therefore, better treatment screening approaches are needed. In this study, we have developed a novel functional precision medicine approach to test the response to anticancer treatments in organoids derived from the resected tumors of glioblastoma patients. Methods: GB organoids were grown for a short period of time to prevent any genetic and morphological evolution and divergence from the tumor of origin. We chose metabolic imaging by NAD(P)H fluorescence lifetime imaging microscopy (FLIM) to predict early and non-invasively ex-vivo anti-cancer treatment responses of GB organoids. TMZ was used as the benchmark drug to validate the approach. Whole-transcriptome and whole-exome analyses were performed to characterize tumor cases stratification. Results: Our functional precision medicine approach was completed within one week after surgery and two groups of TMZ Responder and Non-Responder tumors were identified. FLIM-based metabolic tumor stratification was well reflected at the molecular level, confirming the validity of our approach, highlighting also new target genes associated with TMZ treatment and identifying a new 17-gene molecular signature associated with survival. The number of MGMT gene promoter methylated tumors was higher in the responsive group, as expected, however, some non-methylated tumor cases turned out to be nevertheless responsive to TMZ, suggesting that our procedure could be synergistic with the classical MGMT methylation biomarker. Conclusions: For the first time, FLIM-based metabolic imaging was used on live glioblastoma organoids. Unlike other approaches, ex-vivo patient-tailored drug response is performed at an early stage of tumor culturing with no animal involvement and with minimal tampering with the original tumor cytoarchitecture. This functional precision medicine approach can be exploited in a range of clinical and laboratory settings to improve the clinical management of GB patients and implemented on other cancers as well.

20.
Biomolecules ; 12(6)2022 05 24.
Article de Anglais | MEDLINE | ID: mdl-35740863

RÉSUMÉ

Primary Sjögren's syndrome (pSS) is a complex autoimmune disorder that particularly affects the salivary and lachrymal glands, generally causing a typical dryness of the eyes and of the mouth. The disease encompasses diverse clinical representations and is characterized by B-cell polyclonal activation and autoantibodies production, including anti-Ro/SSA. Recently, it has been suggested that autoantibody profiling may enable researchers to identify susceptible asymptomatic individuals in a pre-disease state. In this pilot study, we used mass spectrometry to analyze and compare the salivary proteomics of patients with established pSS and patients with pre-clinical SS, identifying a common protein signature in their salivary fluid. We found that several inflammatory, immunity-related, and typical acinar proteins (such as MUC5B, PIP, CST4, and lipocalin 1) were differently expressed in pSS and in pre-clinical SSA+ carriers, compared to healthy controls. This suggests that saliva may closely reflect exocrine gland inflammation from the early phases of the disease. This study confirms the value of salivary proteomics for the identification of reliable biomarkers for SS that could be identified, even in a preclinical phase of the disease.


Sujet(s)
Syndrome de Gougerot-Sjögren , Marqueurs biologiques/métabolisme , Humains , Projets pilotes , Protéomique/méthodes , Salive/métabolisme , Syndrome de Gougerot-Sjögren/diagnostic
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE