Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Phys Chem Chem Phys ; 24(30): 18255-18264, 2022 Aug 03.
Article de Anglais | MEDLINE | ID: mdl-35876232

RÉSUMÉ

Intrinsic defects created by chemically inert gas (Xe) ion implantation in vertically grown ZnO nanorods are studied by optical and X-ray absorption spectroscopy (XAS). The surface defects produced due to dynamic sputtering by ion beams control the fraction of O and Zn with ion fluence, which helps in tuning the optoelectronic properties. The forbidden Raman modes related to Zn interstitials and oxygen vacancies are observed because of the weak Fröhlich interaction, which arises due to disruption of the long-range lattice order. The evolution of the lattice disorder is identified by O K-edge and Zn K-edge scans of XAS. The hybridization strength between the O 2p and Zn 4p states increases with ion fluence and modulates the impact of intrinsic defects. The ion irradiation induced defects also construct intermediate defects bands which reduce the optical bandgap. Density functional theory (DFT) calculations are used to correlate the experimentally observed trend of bandgap narrowing with the origin of electronic states related to Zn interstitial and O vacancy defects within the forbidden energy gap in ZnO. Our finding can be beneficial to achieve enhanced conductivity in ZnO by accurately varying the intrinsic defects through ion irradiation, which may work as a tuning knob to control the optoelectronic properties of the system.

2.
Nanotechnology ; 32(41)2021 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-34198273

RÉSUMÉ

We have investigated the excitonic properties of highly crystalline ZnO hexagonal microdisks grown by the chemical vapour deposition technique. It was observed that a suitable negative catalyst like chlorine suppresses the crystal growth along the (0001) direction. We propose a qualitative model for the experimentally observed layer-by-layer growth mechanism of the microdisks. Room temperature photoluminescence of the microdisks manifests a very high near-band-edge (NBE) emission peak in the UV region and a minor defect peak in the visible region. The excitonic emission of the microdisks was studied using the low-temperature photoluminescence down to 83 K, which reveals a surface exciton peak in the NBE region and well fitted higher-order phonon replicas.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE