Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
BMC Plant Biol ; 24(1): 771, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39134964

RÉSUMÉ

BACKGROUND: In Angiosperms, the continuation of plant species is intricately dependent on the funiculus multifaceted role in nutrient transport, mechanical support, and dehiscence of seeds. SEEDSTICK (STK) is a MADS-box transcription factor involved in seed size and abscission, and one of the few genes identified as affecting funiculus growth. Given the importance of the funiculus to a correct seed development, allied with previous phenotypic observations of stk mutants, we performed a transcriptomic analysis of stk funiculi from floral stage 17, using RNA-sequencing, to infer on the deregulated networks of genes. RESULTS: The generated dataset of differentially expressed genes was enriched with cell wall biogenesis, cell cycle, sugar metabolism and transport terms, all in accordance with stk phenotype observed in funiculi from floral stage 17. We selected eight differentially expressed genes for transcriptome validation using qPCR and/or promoter reporter lines. Those genes were involved with abscission, seed development or novel functions in stk funiculus, such as hormones/secondary metabolites transport. CONCLUSION: Overall, the analysis performed in this study allowed delving into the STK-network established in Arabidopsis funiculus, fulfilling a literature gap. Simultaneously, our findings reinforced the reliability of the transcriptome, making it a valuable resource for candidate genes selection for functional genetic studies in the funiculus. This will enhance our understanding on the regulatory network controlled by STK, on the role of the funiculus and how seed development may be affected by them.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Protéines à domaine MADS , Graines , Transcriptome , Arabidopsis/génétique , Arabidopsis/croissance et développement , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Graines/génétique , Graines/croissance et développement , Protéines à domaine MADS/génétique , Protéines à domaine MADS/métabolisme , Régulation de l'expression des gènes végétaux , Analyse de profil d'expression de gènes , Fécondation/génétique
2.
Biomolecules ; 13(3)2023 03 02.
Article de Anglais | MEDLINE | ID: mdl-36979397

RÉSUMÉ

Quantitative real-time polymerase chain reaction (qPCR) is a widely used method to analyse the gene expression pattern in the reproductive tissues along with detecting gene levels in mutant backgrounds. This technique requires stable reference genes to normalise the expression level of target genes. Nonetheless, a considerable number of publications continue to present qPCR results normalised to a single reference gene and, to our knowledge, no comparative evaluation of multiple reference genes has been carried out in specific reproductive tissues of Arabidopsis thaliana. Herein, we assessed the expression stability levels of ten candidate reference genes (UBC9, ACT7, GAPC-2, RCE1, PP2AA3, TUA2, SAC52, YLS8, SAMDC and HIS3.3) in two conditional sets: one across flower development and the other using inflorescences from different genotypes. The stability analysis was performed using the RefFinder tool, which combines four statistical algorithms (geNorm, NormFinder, BestKeeper and the comparative ΔCt method). Our results showed that RCE1, SAC52 and TUA2 had the most stable expression in different flower developmental stages while YLS8, HIS3.3 and ACT7 were the top-ranking reference genes for normalisation in mutant studies. Furthermore, we validated our results by analysing the expression pattern of genes involved in reproduction and examining the expression of these genes in published mutant backgrounds. Overall, we provided a pool of appropriate reference genes for expression studies in reproductive tissues of A. thaliana, which will facilitate further gene expression studies in this context. More importantly, we presented a framework that will promote a consistent and accurate analysis of gene expression in any scientific field. Simultaneously, we highlighted the relevance of clearly defining and describing the experimental conditions associated with qPCR to improve scientific reproducibility.


Sujet(s)
Arabidopsis , Réaction de polymérisation en chaine en temps réel/méthodes , Arabidopsis/génétique , Reproductibilité des résultats , Régulation de l'expression des gènes végétaux , Fleurs/génétique , Analyse de profil d'expression de gènes
3.
Front Plant Sci ; 13: 1083098, 2022.
Article de Anglais | MEDLINE | ID: mdl-36531351

RÉSUMÉ

Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high proportion of carbohydrates, widely distributed in the plant kingdom and ubiquitously present in land plants. AGPs have long been suggested to play important roles in plant reproduction and there is already evidence that specific glycoproteins are essential for male and female gametophyte development, pollen tube growth and guidance, and successful fertilization. However, the functions of many of these proteins have yet to be uncovered, mainly due to the difficulty to study individual AGPs. In this work, we generated molecular tools to analyze the expression patterns of a subgroup of individual AGPs in different Arabidopsis tissues, focusing on reproductive processes. This study focused on six AGPs: four classical AGPs (AGP7, AGP25, AGP26, AGP27), one AG peptide (AGP24) and one chimeric AGP (AGP31). These AGPs were first selected based on their predicted expression patterns along the reproductive tissues from available RNA-seq data. Promoter analysis using ß-glucuronidase fusions and qPCR in different Arabidopsis tissues allowed to confirm these predictions. AGP7 was mainly expressed in female reproductive tissues, more precisely in the style, funiculus, and integuments near the micropyle region. AGP25 was found to be expressed in the style, septum and ovules with higher expression in the chalaza and funiculus tissues. AGP26 was present in the ovules and pistil valves. AGP27 was expressed in the transmitting tissue, septum and funiculus during seed development. AGP24 was expressed in pollen grains, in mature embryo sacs, with highest expression at the chalazal pole and in the micropyle. AGP31 was expressed in the mature embryo sac with highest expression at the chalaza and, occasionally, in the micropyle. For all these AGPs a co-expression analysis was performed providing new hints on its possible functions. This work confirmed the detection in Arabidopsis male and female tissues of six AGPs never studied before regarding the reproductive process. These results provide novel evidence on the possible involvement of specific AGPs in plant reproduction, as strong candidates to participate in pollen-pistil interactions in an active way, which is significant for this field of study.

4.
Plant Methods ; 17(1): 82, 2021 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-34301293

RÉSUMÉ

DNA-protein interactions are essential for several molecular and cellular mechanisms, such as transcription, transcriptional regulation, DNA modifications, among others. For many decades scientists tried to unravel how DNA links to proteins, forming complex and vital interactions. However, the high number of techniques developed for the study of these interactions made the choice of the appropriate technique a difficult task. This review intends to provide a historical context and compile the methods that describe DNA-protein interactions according to the purpose of each approach, summarise the respective advantages and disadvantages and give some examples of recent uses for each technique. The final aim of this work is to help in deciding which technique to perform according to the objectives and capacities of each research team. Considering the DNA-binding proteins characterisation, filter binding assay and EMSA are easy in vitro methods that rapidly identify nucleic acid-protein binding interactions. To find DNA-binding sites, DNA-footprinting is indeed an easier, faster and reliable approach, however, techniques involving base analogues and base-site selection are more precise. Concerning binding kinetics and affinities, filter binding assay and EMSA are useful and easy methods, although SPR and spectroscopy techniques are more sensitive. Finally, relatively to genome-wide studies, ChIP-seq is the desired method, given the coverage and resolution of the technique. In conclusion, although some experiments are easier and faster than others, when designing a DNA-protein interaction study several concerns should be taken and different techniques may need to be considered, since different methods confer different precisions and accuracies.

5.
Methods Mol Biol ; 2160: 149-165, 2020.
Article de Anglais | MEDLINE | ID: mdl-32529434

RÉSUMÉ

Pollen tubes have been key models to study plant cell wall elongation. Arabidopsis thaliana, although small, is a nice model, easy to grow and with a large set of studies to simplify result integration and interpretation. Pollen tubes may be used for gene expression essays, but also for biochemical characterization of the cell wall composition. However, pollen tube culture methods though seemingly straightforward have often a multitude of small technical details crucial for success, quickly deterring the more inexperienced and setting back experiments for months at the time. Here we propose a detailed method to set up easily a pollen tube culture routine in any lab, with a minimal set of equipment, to isolate and process pollen tubes for gene expression and/or cell wall biochemistry studies.


Sujet(s)
Techniques de culture cellulaire/méthodes , Génomique/méthodes , Tube pollinique/métabolisme , Arabidopsis , Tube pollinique/cytologie , Tube pollinique/génétique
6.
Front Plant Sci ; 11: 610377, 2020.
Article de Anglais | MEDLINE | ID: mdl-33384708

RÉSUMÉ

Arabinogalactan-proteins (AGPs) are a large, complex, and highly diverse class of heavily glycosylated proteins that belong to the family of cell wall hydroxyproline-rich glycoproteins. Approximately 90% of the molecules consist of arabinogalactan polysaccharides, which are composed of arabinose and galactose as major sugars and minor sugars such as glucuronic acid, fucose, and rhamnose. About half of the AGP family members contain a glycosylphosphatidylinositol (GPI) lipid anchor, which allows for an association with the outer leaflet of the plasma membrane. The mysterious AGP family has captivated the attention of plant biologists for several decades. This diverse family of glycoproteins is widely distributed in the plant kingdom, including many algae, where they play fundamental roles in growth and development processes. The journey of AGP biosynthesis begins with the assembly of amino acids into peptide chains of proteins. An N-terminal signal peptide directs AGPs toward the endoplasmic reticulum, where proline hydroxylation occurs and a GPI anchor may be added. GPI-anchored AGPs, as well as unanchored AGPs, are then transferred to the Golgi apparatus, where extensive glycosylation occurs by the action of a variety glycosyltransferase enzymes. Following glycosylation, AGPs are transported by secretory vesicles to the cell wall or to the extracellular face of the plasma membrane (in the case of GPI-anchored AGPs). GPI-anchored proteins can be released from the plasma membrane into the cell wall by phospholipases. In this review, we present an overview of the accumulated knowledge on AGP biosynthesis over the past three decades. Particular emphasis is placed on the glycosylation of AGPs as the sugar moiety is essential to their function. Recent genetics and genomics approaches have significantly contributed to a broader knowledge of AGP biosynthesis. However, many questions remain to be elucidated in the decades ahead.

7.
Plant Reprod ; 32(4): 353-370, 2019 12.
Article de Anglais | MEDLINE | ID: mdl-31501923

RÉSUMÉ

KEY MESSAGE: The fasciclin-like arabinogalactan proteins organization into four groups is conserved and may be related to specific roles in developmental processes across angiosperms. Fasciclin-like arabinogalactan proteins (FLAs) are a subclass of arabinogalactan proteins (AGPs), which contain fasciclin-like domains in addition to typical AGP domains. FLAs are present across all embryophytes, and despite their low overall sequence similarity, conserved regions that define the fasciclin functional domain (FAS) have been identified, suggesting that the cell adhesion property is also conserved. FLAs in Arabidopsis have been organized into four subgroups according to the number and distribution of functional domains. Recent studies associated FLAs with cell wall-related processes where domain organization seemed to be related to functional roles. In Arabidopsis, FLAs containing a single FAS domain were found to be important for the integrity and elasticity of the plant cell wall matrix, and FLAs with two FAS domains and two AGP domains were found to be involved in maintaining proper cell expansion under salt stress conditions. The main purpose of the present work was to elucidate the expression pattern of selected FLA genes during embryo and seed development using RT-qPCR. AtFLA8 and AtFLA10, two Arabidopsis genes that stood out in previous microarray studies of embryo development, were further examined using promoter-driven gene reporter analyses. We also studied the expression of cork oak FLA genes and found that their expression partially parallels the expression patterns of the putative AtFLA orthologs. We propose that the functional organization of FLAs is conserved and may be related to fundamental aspects of embryogenesis and seed development across angiosperms. Phylogenetic studies were performed, and we show that the same basic four-subgroup organization described for Arabidopsis FLA gene classification is valid for most Arabidopsis FLA orthologs of several plant species, namely poplar, corn and cork oak.


Sujet(s)
Arabidopsis/génétique , Mucoprotéines/génétique , Graines/génétique , Arabidopsis/physiologie , Régulation de l'expression des gènes végétaux , Phylogenèse , Protéines végétales/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE