Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Animal ; 18(8): 101222, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39018920

RÉSUMÉ

Internationally, consumer dissatisfaction with cow-calf separation at birth has led to increased interest in alternative calf-rearing methods, specifically cow-calf contact (CCC) systems. The objectives of this preliminary study were to estimate whether CCC could be incorporated into an Irish spring-calving, pasture-based system, and to investigate the effects on cow milk production and health. Three systems were compared: the conventional Irish system (CONV;18 cows), cow and calf were separated < 1 h postbirth, cows were pasture-based and milked twice-a-day; a full-time access system (FT;14 cows), cow and calf were allowed constant, unrestricted access, were pasture-based, and cows were milked twice-a-day; and a part-time access system (PT;18 cows), cow and calf had unrestricted access when indoors at night, cows grazed outdoors by day while calves remained indoors, and cows were milked once-a-day in the morning. Cows were blocked and balanced across the three systems by previous lactation machine milk yield (MMY), BW, and body condition score (BCS). Following an 8-week CCC period, all calves were weaned (FT and PT underwent a 7-d gradual weaning and separation process) and all cows were milked twice-a-day. Cow MMY was recorded daily and milk composition was recorded weekly; milk data were analysed from weeks 1 to 8 (CCC period), weeks 9 to 35 (post-CCC period), and weeks 1 to 35 (cumulative lactation). Cow BW and BCS were taken weekly for weeks 1-12, and at the end of the lactation. During the CCC period, all systems differed (P < 0.001) in MMY (mean ± SEM; 24.0, 13.6, and 10.3 ± 0.50 kg/d for CONV, FT, and PT cows, respectively). After the CCC period, CONV MMY (20.2 ± 0.48 kg/d) remained higher (P < 0.001) than the FT (16.6 kg/d) and PT cows (15.7 kg/d). The FT and PT cows yielded 24 and 31% less in cumulative lactation MMY and 26 and 35% less in cumulative lactation milk solids yield, respectively, compared to CONV (5 072 ± 97.0 kg and 450 ± 8.7 kg). During the CCC period, somatic cell score was higher (P = 0.030) in PT cows (5.15 ± 0.118) compared to FT cows (4.70 ± 0.118), while CONV (4.94 ± 0.118) were inconclusive to both. The PT cows (523 ± 4.9 and 520 ± 6.8 kg) were heavier than the CONV (474 ± 4.9 and 479 ± 6.8 kg) and FT (488 ± 4.9 and 487 ± 6.8 kg) cows at week 4 and week 8 (both P < 0.001). The PT cows had higher BCS than CONV and FT at all observed times. This preliminary research suggests that although CCC was incorporated without impacting cow health, the two CCC systems investigated negatively affected cow production.


Sujet(s)
Industrie laitière , Lactation , Lait , Animaux , Bovins/physiologie , Femelle , Industrie laitière/méthodes , Lactation/physiologie , Lait/métabolisme , Lait/composition chimique , Saisons , Irlande , Élevage/méthodes , Sevrage , Études de faisabilité
2.
J Appl Physiol (1985) ; 132(1): 187-198, 2022 01 01.
Article de Anglais | MEDLINE | ID: mdl-34855522

RÉSUMÉ

Simulated military operational stress (SMOS) provides a useful model to better understand resilience in humans as the stress associated with caloric restriction, sleep deficits, and fatiguing exertion degrades physical and cognitive performance. Habitual physical activity may confer resilience against these stressors by promoting favorable use-dependent neuroplasticity, but it is unclear how physical activity, resilience, and corticospinal excitability (CSE) relate during SMOS. To examine associations between corticospinal excitability, physical activity, and physical performance during SMOS. Fifty-three service members (age: 26 ± 5 yr, 13 women) completed a 5-day and -night intervention composed of familiarization, baseline, SMOS (2 nights/days), and recovery days. During SMOS, participants performed rigorous physical and cognitive activities while receiving half of normal sleep (two 2-h blocks) and caloric requirements. Lower and upper limb CSE were determined with transcranial magnetic stimulation (TMS) stimulus-response curves. Self-reported resilience, physical activity, military-specific physical performance (TMT), and endocrine factors were compared in individuals with high (HIGH) and low CSE based on a median split of lower limb CSE at baseline. HIGH had greater physical activity and better TMT performance throughout SMOS. Both groups maintained physical performance despite substantial psychophysiological stress. Physical activity, resilience, and TMT performance were directly associated with lower limb CSE. Individual differences in physical activity coincide with lower (but not upper) limb CSE. Such use-dependent corticospinal excitability directly relates to resilience and physical performance during SMOS. Future studies may use noninvasive neuromodulation to clarify the interplay among CSE, physical activity, and resilience and improve physical and cognitive performance.NEW & NOTEWORTHY We demonstrate that individual differences in physical activity levels coincide with lower limb corticospinal excitability. Such use-dependent corticospinal excitability directly relates to resilience and physical performance during a 5-day simulation of military operational stress with caloric restriction, sleep restriction and disruption, and heavy physical and cognitive exertion.


Sujet(s)
Personnel militaire , Cortex moteur , Adulte , Potentiels évoqués moteurs , Femelle , Humains , Performance fonctionnelle physique , Tractus pyramidaux , Stimulation magnétique transcrânienne , Jeune adulte
3.
Brain Res ; 1761: 147395, 2021 Mar 02.
Article de Anglais | MEDLINE | ID: mdl-33662340

RÉSUMÉ

Transcranial magnetic stimulation (TMS) is increasingly used to examine lower extremity corticospinal excitability (CSE) in clinical and sports research. Because CSE is task-specific, there is growing emphasis on the use of ecological tasks. Nevertheless, the comparative reliability of CSE measurements during established (e.g. knee extensions; KE) and more recent ecological (e.g. squats; SQT) lower extremity tasks has received less attention. The aim of this study was to compare the test-retest reliability of CSE, force, and muscle activity (EMG) during isometric SQT and KE. 19 right-footed men (age: 25 ± 5 yrs) with similar fitness and body composition performed SQT (N = 7) or KE (N = 12) on two consecutive days. Force and EMG were recorded during maximum voluntary isometric contractions (MVC). Corticospinal excitability was determined in the dominant leg during light (15% MVC) contractions based on motor evoked potential (MEP) stimulus-response-curves (SRC). Test-retest reliability, absolute agreement, and consistency were determined for force, EMG, and SRC MEP maximum (MEPMAX) and rising phase midpoint (V50). As a secondary analysis, all outcomes were compared between groups with mixed-methods ANCOVAs (Task × Time, covariate: body-fat-percentage). Compared with SQT, KE displayed better test-retest reliability and agreement for MEPMAX whereas V50, force, and EMG were similarly reliable. Force (p = 0.01) and MEPMAX (p = 0.02) were also greater during KE despite a similar V50 (p = 0.11). Differences in test-retest reliability, absolute agreement, and between-group comparisons highlight the need to carefully select lower limb TMS assessment tasks and encourage future efforts to balance ecological validity with statistical sensitivity.

4.
Exp Brain Res ; 239(4): 1099-1110, 2021 Apr.
Article de Anglais | MEDLINE | ID: mdl-33547521

RÉSUMÉ

INTRODUCTION: The double-cone coil (D-CONE) is frequently used in transcranial magnetic stimulation (TMS) experiments that target the motor cortex (M1) lower-limb representation. Anecdotal evidence and modeling studies have shed light on the off-target effects of D-CONE TMS but the physiological extent remains undetermined. PURPOSE: To characterize the off-target effects of D-CONE TMS based on bilateral corticospinal responses in the legs and hands. METHODS: Thirty (N = 30) participants (9 women, age: 26 ± 5yrs) completed a stimulus-response curve procedure with D-CONE TMS applied to the dominant vastus lateralis (cVL) and motor-evoked potentials (MEPs) recorded in each active VL and resting first dorsal interosseous (FDI). As a positive control (CON), the dominant FDI was directly targeted with a figure-of-eight coil and MEPs were similarly recorded in each active FDI and resting VL. MEPMAX, V50 and MEP latencies were compared with repeated-measures ANOVAs or mixed-effects analysis and Bonferroni-corrected pairwise comparisons. RESULTS: Off-target responses were evident in all muscles, with similar MEPMAX in the target (cVL) and off-target (iVL) leg (p = 0.99) and cFDI compared with CON (p = 0.99). cFDI and CON MEPMAX were greater than iFDI (p < 0.01). A main effect of target (p < 0.001) indicated that latencies were shorter with CON but similar in all muscles with D-CONE. DISCUSSION: Concurrent MEP recordings in bilateral upper- and lower-extremity muscles confirm that lower-limb D-CONE TMS produces substantial distance-dependent off-target effects. In addition to monitoring corticospinal responses in off-target muscles to improve targeting accuracy in real-time, future studies may incorporate off-target information into statistical models post-hoc.


Sujet(s)
Cortex moteur , Stimulation magnétique transcrânienne , Enfant d'âge préscolaire , Potentiels évoqués moteurs , Femelle , Main , Humains , Membre inférieur , Muscles squelettiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE