Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Elife ; 112022 07 14.
Article de Anglais | MEDLINE | ID: mdl-35833623

RÉSUMÉ

Increased astrocytic Ca2+ signaling has been shown in Alzheimer's disease mouse models, but to date no reports have characterized behaviorally induced astrocytic Ca2+ signaling in such mice. Here, we employ an event-based algorithm to assess astrocytic Ca2+ signals in the neocortex of awake-behaving tg-ArcSwe mice and non-transgenic wildtype littermates while monitoring pupil responses and behavior. We demonstrate an attenuated astrocytic Ca2+ response to locomotion and an uncoupling of pupil responses and astrocytic Ca2+ signaling in 15-month-old plaque-bearing mice. Using the genetically encoded fluorescent norepinephrine sensor GRABNE, we demonstrate a reduced norepinephrine signaling during spontaneous running and startle responses in the transgenic mice, providing a possible mechanistic underpinning of the observed reduced astrocytic Ca2+ responses. Our data points to a dysfunction in the norepinephrine-astrocyte Ca2+ activity axis, which may account for some of the cognitive deficits observed in Alzheimer's disease.


Neurodegenerative conditions such as Parkinson's or Alzheimer's disease are characterized by neurons dying and being damaged. Yet neurons are only one type of brain actors; astrocytes, for example, are star-shaped 'companion' cells that have recently emerged as being able to fine-tune neuronal communication. In particular, they can respond to norepinephrine, a signaling molecule that acts to prepare the brain and body for action. This activation results, for instance, in astrocytes releasing chemicals that can act on neurons. Certain cognitive symptoms associated with Alzheimer's disease could be due to a lack of norepinephrine. In parallel, studies in anaesthetized mice have shown perturbed astrocyte signaling in a model of the condition. Disrupted norepinephrine-triggered astrocyte signaling could therefore be implicated in the symptoms of the disease. Experiments in awake mice are needed to investigate this link, especially as anesthesia is known to disrupt the activity of astrocytes. To explore this question, Åbjørsbråten, Skaaraas et al. conducted experiments in naturally behaving mice expressing mutations found in patients with early-onset Alzheimer's disease. These mice develop hallmarks of the disorder. Compared to their healthy counterparts, these animals had reduced astrocyte signaling when running or being startled. Similarly, a fluorescent molecular marker for norepinephrine demonstrated less signaling in the modified mice compared to healthy ones. Over 55 million individuals currently live with Alzheimer's disease. The results by Åbjørsbråten, Skaaraas et al. suggest that astrocyte­norepinephrine communication may be implicated in the condition, an avenue of research that could potentially lead to developing new treatments.


Sujet(s)
Maladie d'Alzheimer , Astrocytes , Maladie d'Alzheimer/génétique , Animaux , Astrocytes/physiologie , Signalisation calcique/physiologie , Souris , Souris transgéniques , Norépinéphrine , Vigilance/physiologie
2.
J Alzheimers Dis ; 83(4): 1651-1663, 2021.
Article de Anglais | MEDLINE | ID: mdl-34459401

RÉSUMÉ

BACKGROUND: Vascular pathology is a common feature in patients with advanced Alzheimer's disease, with cerebral amyloid angiopathy (CAA) and microvascular changes commonly observed at autopsies and in genetic mouse models. However, despite a plethora of studies addressing the possible impact of CAA on brain vasculature, results have remained contradictory, showing reduced, unchanged, or even increased capillary densities in human and rodent brains overexpressing amyloid-ß in Alzheimer's disease and Down's syndrome. OBJECTIVE: We asked if CAA is associated with changes in angiogenetic factors or receptors and if so, whether this would translate into morphological alterations in pericyte coverage and vessel density. METHODS: We utilized the transgenic mice carrying the Arctic (E693G) and Swedish (KM670/6701NL) amyloid precursor protein which develop severe CAA in addition to parenchymal plaques. RESULTS: The main finding of the present study was that CAA in Tg-ArcSwe mice is associated with upregulated angiopoietin and downregulated hypoxia-inducible factor. In the same mice, we combined immunohistochemistry and electron microscopy to quantify the extent of CAA and investigate to which degree vessels associated with amyloid plaques were pathologically affected. We found that despite a severe amount of CAA and alterations in several angiogenetic factors in Tg-ArcSwe mice, this was not translated into significant morphological alterations like changes in pericyte coverage or vessel density. CONCLUSION: Our data suggest that CAA does not impact vascular density but might affect capillary turnover by causing changes in the expression levels of angiogenetic factors.


Sujet(s)
Maladie d'Alzheimer/anatomopathologie , Angiopoïétines , Angiopathie amyloïde cérébrale/anatomopathologie , Hypoxie/métabolisme , Souris transgéniques , Régulation positive , Précurseur de la protéine bêta-amyloïde/génétique , Animaux , Encéphale/anatomopathologie , Modèles animaux de maladie humaine , Souris , Péricytes/anatomopathologie , Plaque amyloïde/anatomopathologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...