Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 13 de 13
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Bioact Mater ; 27: 447-460, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-37168023

RÉSUMÉ

In this study, advanced techniques such as atom probe tomography, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy were used to determine the corrosion mechanism of the as-ECAPed Zn-0.8Mg-0.2Sr alloy. The influence of microstructural and surface features on the corrosion mechanism was investigated. Despite its significance, the surface composition before exposure is often neglected by the scientific community. The analyses revealed the formation of thin ZnO, MgO, and MgCO3 layers on the surface of the material before exposure. These layers participated in the formation of corrosion products, leading to the predominant occurrence of hydrozincite. In addition, the layers possessed different resistance to the environment, resulting in localized corrosion attacks. The segregation of Mg on the Zn grain boundaries with lower potential compared with the Zn-matrix was revealed by atom probe tomography and atomic force microscopy. The degradation process was initiated by the activity of micro-galvanic cells, specifically Zn - Mg2Zn11/SrZn13. This process led to the activity of the crevice corrosion mechanism and subsequent attack to a depth of 250 µm. The corrosion rate of the alloy determined by the weight loss method was 0.36 mm·a-1. Based on this detailed study, the degradation mechanism of the Zn-0.8Mg-0.2Sr alloy is proposed.

2.
Materials (Basel) ; 16(5)2023 Mar 06.
Article de Anglais | MEDLINE | ID: mdl-36903242

RÉSUMÉ

The present work aimed to study the properties of medium-carbon steel during tempering treatment and to present the strength increase of medium-carbon spring steels by strain-assisted tempering (SAT). The effect of double-step tempering and double-step tempering with rotary swaging, also known as SAT, on the mechanical properties and microstructure was investigated. The main goal was to achieve a further enhancement of the strength of medium-carbon steels using SAT treatment. The microstructure consists of tempered martensite with transition carbides in both cases. The yield strength of the DT sample is 1656 MPa, while that of the SAT sample is about 400 MPa higher. On the contrary, plastic properties such as the elongation and reduction in area have lower values after SAT processing, about 3% and 7%, respectively, compared to the DT treatment. Grain boundary strengthening from low-angle grain boundaries can be attributed to the increase in strength. Based on X-ray diffraction analysis, a lower dislocation strengthening contribution was determined for the SAT sample compared to the double-step tempered sample.

3.
Materials (Basel) ; 15(23)2022 Dec 06.
Article de Anglais | MEDLINE | ID: mdl-36500202

RÉSUMÉ

In this study, the Zn-0.8Mg-0.28CaO wt.% composite was successfully prepared using different conditions of ball milling (rotations and time) followed by a direct extrusion process. These materials were characterized from the point of view of microstructure and compressive properties, and the correlation between those characteristics was found. Microstructures of individual materials possessed differences in grain size, where the grain size decreased with the intensified conditions (milling speed and time). However, the mutual relation between grain size and compressive strength was not linear. This was caused by the effect of other factors, such as texture, intermetallic phases, and pores. Material texture affects the mechanical properties by a different activity ratio between basal and pyramidal slips. The properties of intermetallic particles and pores were determined in material volume using micro-computed tomography (µCT), enhancing the precision of our assumptions compared with commonly applied methods. Based on that, and the analysis after the compressive tests, we were able to determine the influence of aspect ratio, feret diameters, and volume content of intermetallic phases and pores on mechanical behavior. The influence of the aspects on mechanical behavior is described and discussed.

4.
Int J Pharm ; 623: 121955, 2022 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-35753537

RÉSUMÉ

The aim of this study was to investigate the molecular structures of tadalafil solid dispersions prepared by different techniques and further to relate them to surface free energy information indicating the final amorphousness of the product. Thus, we tried to complement the existing knowledge of solid dispersion formation. Poorly water-soluble tadalafil was combined with different polymers, i.e. Kollidon® 12 PF, Kollidon® VA 64 and Soluplus®, to form model systems. To assess the extent of drug-polymer miscibility, we studied model solid dispersion surface energy using inverse gas chromatography and phase micro-structure using confocal Raman microscopy. The selection of the preparation method was found to play a crucial role in the molecular arrangement of the incorporated drug and the polymer in resulting solid dispersion. Our results showed that a lower surface free energy indicated the formation of a more homogeneous solid dispersion. Conversely, a higher surface free energy corresponded to the heterogeneous systems containing tadalafil amorphous clusters that were captured by Raman mapping. Thus, we successfully introduced a novel evaluation approach of the drug molecular arrangement in solid dispersions that is especially useful for examining the miscibility of the components when the conventional characterizing techniques are inconclusive or yield variable results.


Sujet(s)
Polymères , Povidone , Chromatographie en phase gazeuse , Polymères/composition chimique , Povidone/composition chimique , Solubilité , Tadalafil/composition chimique
5.
Materials (Basel) ; 13(24)2020 Dec 09.
Article de Anglais | MEDLINE | ID: mdl-33316967

RÉSUMÉ

Titanium and its alloys belong to the group of materials used in implantology due to their biocompatibility, outstanding corrosion resistance and good mechanical properties. However, the value of Young's modulus is too high in comparison with the human bone, which could result in the failure of implants. This problem can be overcome by creating pores in the materials, which, moreover, improves the osseointegration. Therefore, TiSi2 and TiSi2 with 20 wt.% of the pore-forming agent (PA) were prepared by reactive sintering and compared with pure titanium and titanium with the addition of various PA content in this study. For manufacturing implants (especially augmentation or spinal replacements), titanium with PA seemed to be more suitable than TiSi2 + 20 wt.% PA. In addition, titanium with 30 or 40 wt.% PA contained pores with a size allowing bone tissue ingrowth. Furthermore, Ti + 30 wt.% PA was more suitable material in terms of corrosion resistance; however, its Young's modulus was higher than that of the human bone while Ti + 40 wt.% PA had a Young's modulus close to the human bone.

6.
Molecules ; 25(8)2020 Apr 21.
Article de Anglais | MEDLINE | ID: mdl-32326158

RÉSUMÉ

This work highlights new results on the synthesis of the TiAl3 intermetallic phase using self-propagating high-temperature synthesis. This method is considered a promising sintering route for intermetallic compounds. It was found that the reactions proceed in two stages. Below the melting point of aluminum, the Ti2Al5 phase forms at 450 °C after long annealing times by a direct solid-state reaction between the aluminum and titanium, and is converted consequently to TiAl3. This is a completely new finding; until now, many authors have believed in the preferential formation of the TiAl3 phase. The second stage, the self-propagating strongly exothermic reaction, proceeds above the melting point of aluminum. It leads to the formation of the TiAl3 phase accompanied by Ti2Al5 and Ti3Al phases. The reaction mechanism was shown in the form of chemical equations, which were supported by calculating Gibbs energy. Reaction temperatures (Tonset, Tmaximum, and Toffset) were determined after induction heating thanks to recording by an optical pyrometer. This finding provides completely new opportunities for the determination of activation energy at heating rates, in which common calorimeters are not able to detect a response or even measure. Now, the whole procedure will become accessible.


Sujet(s)
Alliages/composition chimique , Aluminium/composition chimique , Titane/composition chimique , Chauffage , Température élevée , Test de matériaux , Modèles chimiques , Température de transition , Diffraction des rayons X
7.
Materials (Basel) ; 13(2)2020 Jan 08.
Article de Anglais | MEDLINE | ID: mdl-31936415

RÉSUMÉ

Short-term mechanical alloying and compaction by spark plasma sintering was used for the production of FeAl20Si20Mo20-XNiX (X corresponds to 5-15 wt %) alloy, which showed an ultrafine-grained microstructure with dimensions of phases around 200 nm or smaller. It was found that the addition of Mo and Ni to the FeAl20Si20 alloy results in the formation of the AlMoSi phase compared to the three-phase FeAl20Si20 alloy, which initially contained FeSi, Fe3Si, and Fe3Al2Si3 phases. All the investigated alloys increased their hardness, reaching up to 1401 HV 1 for the FeAl20Si20Mo5Ni15 alloy, which contained in total 58.5% of the FeSi and Fe3Al2Si3 phases. As a result, all the prepared alloys showed one order magnitude lower wear rates ranging from 3.14 to 5.97·10-6 mm3·N-1·m-1 as well as significantly lower friction coefficients compared to two reference tool steels. The alloys achieved high compressive strengths (up to 2200 MPa); however, they also exhibited high brittleness even after long-term annealing, which reduced the strengths of all the alloys below approximately 1600 MPa. Furthermore, the alloys were showing ductile behavior when compressively tested at elevated temperature of 800 °C. The oxidation resistance of the alloys was superior due to the formation of a compact Al2O3 protective layer that did not delaminate.

8.
Materials (Basel) ; 12(24)2019 Dec 06.
Article de Anglais | MEDLINE | ID: mdl-31817662

RÉSUMÉ

Ni-Ti alloys are considered to be very important shape memory alloys with a wide application area including, e.g., biomaterials, actuators, couplings, and components in automotive, aerospace, and robotics industries. In this study, the NiTi46 (wt.%) alloy was prepared by a combination of self-propagating high-temperature synthesis, milling, and spark plasma sintering consolidation at three various temperatures. The compacted samples were subsequently heat-treated at temperatures between 400 °C and 900 °C with the following quenching in water or slow cooling in a closed furnace. The influence of the consolidation temperature and regime of heat treatment on the microstructure, mechanical properties, and temperatures of phase transformation was evaluated. The results demonstrate the brittle behaviour of the samples directly after spark plasma sintering at all temperatures by the compressive test and no transformation temperatures at differential scanning calorimetry curves. The biggest improvement of mechanical properties, which was mainly a ductility enhancement, was achieved by heat treatment at 700 °C. Slow cooling has to be recommended in order to obtain the shape memory properties.

9.
Pharmaceutics ; 11(8)2019 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-31382377

RÉSUMÉ

The aims of this study were to investigate how the release of tadalafil is influenced by two grades of polyvinylpyrrolidone (Kollidon® 12 PF and Kollidon® VA 64) and various methods of preparing solid dispersions (solvent evaporation, spray drying and hot-melt extrusion). Tadalafil is poorly water-soluble and its high melting point makes it very sensitive to the solid dispersion preparation method. Therefore, the objectives were to make a comparative evaluation among different solid dispersions and to assess the effect of the physicochemical nature of solid dispersions on the drug release profile with respect to the erosion-diffusion mechanism. The solid dispersions were evaluated for dissolution profiles, XRD, SEM, FT-IR, DSC, and solubility or stability studies. It was found that tadalafil release was influenced by polymer molecular weight. Therefore, solid dispersions containing Kollidon® 12 PF showed a faster dissolution rate compared to Kollidon® VA 64. Tadalafil was released from solid dispersions containing Kollidon® 12 PF because of the combination of erosion and diffusion mechanisms. The diffusion mechanisms were predominant in the initial phase of the experiment and the slow erosion was dissolution-controlling at the second stage of the dissolution. On the contrary, the tadalafil release rate from solid dispersions containing Kollidon® VA 64 was controlled solely by the erosion mechanism.

10.
Materials (Basel) ; 12(13)2019 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-31284548

RÉSUMÉ

This work aims to describe the mechanism of intermediary phases formation in TiAl20 (wt. %) alloy composition during reactive sintering. The reaction between titanium and aluminum powders was studied by in situ diffraction and the results were confirmed by annealing at various temperatures. It was found that the Ti2Al5 phase formed preferentially and its formation was detected at 400 °C. So far, this phase has never been found in this alloy composition during reactive sintering processes. Subsequently, the Ti2Al5 phase reacted with the titanium, and the formation of the major phase, Ti3Al, was accompanied by the minor phase, TiAl. Equations of the proposed reactions are presented in this paper and their thermodynamic and kinetic feasibility are supported by Gibbs energies of reaction and reaction enthalpies.

11.
Eur J Pharm Sci ; 130: 247-259, 2019 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-30684660

RÉSUMÉ

Surface energy is extensively adopted to predict the surface properties of materials nowadays. Our study was aimed at utilizing the surface free energy measured by inverse gas chromatography to determine inter-particle interactions and to describe the overall behaviour of mixtures. The model drugs of different solubility (tadalafil, levocetirizine dihydrochloride, vardenafil hydrochloride, and amlodipine besylate) and two grades of polyvinylpyrrolidone (Kollidon® 12 PF, Kollidon® VA 64) were mixed in various ratios. Investigated components were characterized using inverse gas chromatography, particle size distribution and specific surface area. We also determined the work of adhesion and cohesion between the components in the binary mixtures. Due to the formation of levocetirizine agglomerates, the effect of mixing time on both components of the surface free energy was also studied for the binary mixture with Kollidon® VA 64. The results based on the energy analysis, especially positive or negative excess surface energies in theoretical and real binary mixtures, indicate that we can predict whether the components can form the desired ordered (interactive) mixture. For this reason, we have proposed, to the best of our knowledge, different approach to predict the interactions between components and their behaviour in the binary mixtures using inverse gas chromatography in terms of the energy balance based only on the surface parameters (surface free energy, dispersive and specific surface energy). Therefore, the approach of energy balance is an innovative and comparatively simple tool for analysis and identification of interactions between components in particulate systems, which can also predict the quality of the mixing.


Sujet(s)
Préparations pharmaceutiques/analyse , Préparations pharmaceutiques/métabolisme , Polymères/analyse , Polymères/pharmacocinétique , Chromatographie en phase gazeuse/méthodes , Interactions médicamenteuses/physiologie , Prévision , Taille de particule
12.
Materials (Basel) ; 11(5)2018 Apr 27.
Article de Anglais | MEDLINE | ID: mdl-29702609

RÉSUMÉ

This work aims to describe the formation of intermetallics in the Ni-Ti-Al system in dependence on the heating rate, which has been determined previously as the crucial factor of thermal explosion self-propagating synthesis (TE-SHS). The tested alloys contained 1⁻7 wt % aluminum. Thermal analysis has been realized by the optical pyrometer under the conditions of high heating rates up to 110 °C·min−1. TE-SHS process in Ni-Ti-Al system is initiated by exothermic reaction of nickel aluminides Ni2Al3 and NiAl3 at the temperature of 535⁻610 °C. The next reactions occur in dependence on the heating rate. Samples containing 1⁻3 wt % of aluminum exhibit the similar initiation temperature as Ni-Ti binary mixture. The samples containing 5 wt % and more of aluminum were fully reacted after sintering at 800 °C with the heating rate of 300 °C·min−1 and the initiation temperature of the TE-SHS was observed close to Al-Al3Ni eutectic temperature (between 630⁻640 °C).

13.
Materials (Basel) ; 10(11)2017 Nov 05.
Article de Anglais | MEDLINE | ID: mdl-29113096

RÉSUMÉ

In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...