Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Math Biol ; 78(7): 2059-2092, 2019 06.
Article de Anglais | MEDLINE | ID: mdl-30826846

RÉSUMÉ

Calcium signalling is one of the most important mechanisms of information propagation in the body. In embryogenesis the interplay between calcium signalling and mechanical forces is critical to the healthy development of an embryo but poorly understood. Several types of embryonic cells exhibit calcium-induced contractions and many experiments indicate that calcium signals and contractions are coupled via a two-way mechanochemical feedback mechanism. We present a new analysis of experimental data that supports the existence of this coupling during apical constriction. We then propose a simple mechanochemical model, building on early models that couple calcium dynamics to the cell mechanics and we replace the hypothetical bistable calcium release with modern, experimentally validated calcium dynamics. We assume that the cell is a linear, viscoelastic material and we model the calcium-induced contraction stress with a Hill function, i.e. saturating at high calcium levels. We also express, for the first time, the "stretch-activation" calcium flux in the early mechanochemical models as a bottom-up contribution from stretch-sensitive calcium channels on the cell membrane. We reduce the model to three ordinary differential equations and analyse its bifurcation structure semi-analytically as two bifurcation parameters vary-the [Formula: see text] concentration, and the "strength" of stretch activation, [Formula: see text]. The calcium system ([Formula: see text], no mechanics) exhibits relaxation oscillations for a certain range of [Formula: see text] values. As [Formula: see text] is increased the range of [Formula: see text] values decreases and oscillations eventually vanish at a sufficiently high value of [Formula: see text]. This result agrees with experimental evidence in embryonic cells which also links the loss of calcium oscillations to embryo abnormalities. Furthermore, as [Formula: see text] is increased the oscillation amplitude decreases but the frequency increases. Finally, we also identify the parameter range for oscillations as the mechanical responsiveness factor of the cytosol increases. This work addresses a very important and not well studied question regarding the coupling between chemical and mechanical signalling in embryogenesis.


Sujet(s)
Algorithmes , Signalisation calcique , Calcium/métabolisme , Embryon de mammifère/métabolisme , Développement embryonnaire , Cellules épithéliales/métabolisme , Mécanotransduction cellulaire , Simulation numérique , Embryon de mammifère/cytologie , Cellules épithéliales/cytologie , Humains , Modèles biologiques
2.
Oncogene ; 18(5): 1165-76, 1999 Feb 04.
Article de Anglais | MEDLINE | ID: mdl-10022122

RÉSUMÉ

Bcr-Abl plays a critical role in the pathogenesis of Philadelphia chromosome-positive leukemia. Although a large number of substrates and interacting proteins of Bcr-Abl have been identified, it remains unclear whether Bcr-Abl assembles multi-protein complexes and if it does where these complexes are within cells. We have investigated the localization of Bcr-Abl in 32D myeloid cells attached to the extracellular matrix. We have found that Bcr-Abl displays a polarized distribution, colocalizing with a subset of filamentous actin at trailing portions of migrating 32D cells, and localizes on the cortical F-actin and on vesicle-like structures in resting 32D cells. Deletion of the actin binding domain of Bcr-Abl (Bcr-AbI-AD) dramatically enhances the localization of Bcr-Abl on the vesicle-like structures. These distinct localization patterns of Bcr-Abl and Bcr-Abl-AD enabled us to examine the localization of Bcr-Abl substrate and interacting proteins in relation to Bcr-Abl. We found that a subset of biochemically defined target proteins of Bcr-Abl redistributed and co-localized with Bcr-Abl on F-actin and on vesicle-like structures. The co-localization of signaling proteins with Bcr-Abl at its sites of localization supports the idea that Bcr-Abl forms a multi-protein signaling complex, while the polarized distribution and vesicle-like localization of Bcr-Abl may play a role in leukemogenesis.


Sujet(s)
Protéines adaptatrices de la transduction du signal , Protéines adaptatrices du transport vésiculaire , Compartimentation cellulaire , Polarité de la cellule , Protéines de fusion bcr-abl/isolement et purification , Leucémie myéloïde chronique BCR-ABL positive , Ubiquitin-protein ligases , Cellules 3T3 , Actines/isolement et purification , Animaux , Sites de fixation , Adhérence cellulaire , Mouvement cellulaire , Matrice extracellulaire , Protéines de fusion bcr-abl/génétique , Protéine adaptatrice GRB2 , Membranes intracellulaires/métabolisme , Leucémie expérimentale , Souris , Liaison aux protéines/génétique , Protéines/isolement et purification , Protéines proto-oncogènes/isolement et purification , Protéines proto-oncogènes c-cbl , Protéines adaptatrices de signalisation Shc , Transduction du signal , Protéine transformante-1 contenant un domaine d'homologie-2 de Src
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE